A Parallel Version of SMS-EMOA for Many-Objective Optimization Problems

  • Raquel Hernández Gómez
  • Carlos A. Coello Coello
  • Enrique Alba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9921)


In the last decade, there has been a growing interest in multi-objective evolutionary algorithms that use performance indicators to guide the search. A simple and effective one is the \(\mathcal {S}\)-Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA), which is based on the hypervolume indicator. Even though the maximization of the hypervolume is equivalent to achieving Pareto optimality, its computational cost increases exponentially with the number of objectives, which severely limits its applicability to many-objective optimization problems. In this paper, we present a parallel version of SMS-EMOA, where the execution time is reduced through an asynchronous island model with micro-populations, and diversity is preserved by external archives that are pruned to a fixed size employing a recently created technique based on the Parallel-Coordinates graph. The proposed approach, called \(\mathcal {S}\)-PAMICRO (PArallel MICRo Optimizer based on the \(\mathcal {S}\) metric), is compared to the original SMS-EMOA and another state-of-the-art algorithm (HypE) on the WFG test problems using up to 10 objectives. Our experimental results show that \(\mathcal {S}\)-PAMICRO is a promising alternative that can solve many-objective optimization problems at an affordable computational cost.


Execution Time Graphic Processing Unit Density Estimator Pareto Optimal Front Pruning Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adra, S.F., Fleming, P.J.: Diversity management in evolutionary many-objective optimization. IEEE Trans. Evol. Comput. 15(2), 183–195 (2011)CrossRefGoogle Scholar
  2. 2.
    Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)CrossRefGoogle Scholar
  3. 3.
    Bringmann, K., Friedrich, T.: Don’t be greedy when calculating hypervolume contributions. In: FOGA 2009: Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, Orlando, Florida, USA, pp. 103–112. ACM, January 2009Google Scholar
  4. 4.
    Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems, 2nd edn. Springer, New York (2007). ISBN 978-0-387-33254-3MATHGoogle Scholar
  5. 5.
    Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9, 115–148 (1995)MathSciNetMATHGoogle Scholar
  6. 6.
    Emmerich, M.T.M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Fleischer, M.: The measure of Pareto optima applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Hernández Gómez, R., Coello Coello, C.A.: A multi-objective evolutionary algorithm based on parallel coordinates. In: Proceedings of the 2016 Genetic and Evolutionary Computation Conference (GECCO 2016), New York, NY, USA. ACM Press (2016, in press)Google Scholar
  9. 9.
    Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: IEEE Congress on Evolutionary Computation, CEC 2008 (IEEE World Congress on Computational Intelligence), pp. 2419–2426, June 2008Google Scholar
  10. 10.
    Klinkenberg, J.-W., Emmerich, M.T.M., Deutz, A.H., Shir, O.M., Bäck, T.: A reduced-cost SMS-EMOA using Kriging, self-adaptation, and parallelization. In: Ehrgott, M., Naujoks, B., Stewart, T.J., Wallenius, J. (eds.) Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, vol. 634, pp. 301–311. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey. ACM Comput. Surv. 48(1), 13:1–13:35 (2015)CrossRefGoogle Scholar
  12. 12.
    Lopez, E.M., Antonio, L.M., Coello Coello, C.A.: A GPU-based algorithm for a faster hypervolume contribution computation. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello Coello, C.A. (eds.) EMO 2015. LNCS, vol. 9019, pp. 80–94. Springer, Heidelberg (2015)Google Scholar
  13. 13.
    Lücken, C., Barán, B., Brizuela, C.: A survey on multi-objective evolutionary algorithms for many-objective problems. Comput. Optim. Appl. 58(3), 707–756 (2014)MathSciNetMATHGoogle Scholar
  14. 14.
    Luna, F., Alba, E.: Parallel multiobjective evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 1017–1031. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  15. 15.
    Van Veldhuizen, D.A., Zydallis, J.B., Lamont, G.B.: Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 144–173 (2003)CrossRefGoogle Scholar
  16. 16.
    Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes. IEEE Trans. Evol. Comput. 16(1), 86–95 (2012)CrossRefGoogle Scholar
  18. 18.
    Zhou, A., Bo-Yang, Q., Li, H., Zhao, S.-Z., Suganthan, P., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)CrossRefGoogle Scholar
  19. 19.
    Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Raquel Hernández Gómez
    • 1
  • Carlos A. Coello Coello
    • 1
  • Enrique Alba
    • 2
  1. 1.Computer Science DepartmentCINVESTAV-IPN (Evolutionary Computation Group)Mexico CityMexico
  2. 2.Universidad de MálagaMalagaSpain

Personalised recommendations