Advertisement

A Cross-Platform Assessment of Energy Consumption in Evolutionary Algorithms

Towards Energy-Aware Bioinspired Algorithms
  • F. Fernández de Vega
  • F. ChávezEmail author
  • J. Díaz
  • J. A. García
  • P. A. Castillo
  • Juan J. Merelo
  • C. Cotta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9921)

Abstract

Energy consumption is a matter of paramount importance in nowadays environmentally conscious society. It is also bound to be a crucial issue in light of the emergent computational environments arising from the pervasive use of networked handheld devices and wearables. Evolutionary algorithms (EAs) are ideally suited for this kind of environments due to their intrinsic flexibility and adaptiveness, provided they operate on viable energy terms. In this work we analyze the energy requirements of EAs, and particularly one of their main flavours, genetic programming (GP), on several computational platforms and study the impact that parametrisation has on these requirements, paving the way for a future generation of energy-aware EAs. As experimentally demonstrated, handheld devices and tiny computer models mainly used for educational purposes may be the most energy efficient ones when looking for solutions by means of EAs.

Keywords

Green computing Energy-aware computing Performance measurements Evolutionary algorithms 

Notes

Acknowledgements

We acknowledge support from Spanish Ministry of Economy and Competitiveness and European Regional Development Fund (FEDER) under project EphemeCH (TIN2014-56494-C4-{1,2,3}-P), from University of Granada, PROY-PP2015-06 (Plan Propio 2015 UGR), from Junta de Andalucía under project DNEMESIS (P10-TIC-6083), from Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech, from Junta de Extremadura FEDER, project GR15068 and FP7-PEOPLE-2013 IRSES Grant 612689 ACoBSEC.

References

  1. 1.
    Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Albers, S.: Algorithms for dynamic speed scaling. In: Schwentick, T., Dürr, C. (eds.) Leibniz International Proceedings in Informatics (LIPIcs). 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011), vol. 9, pp. 1–11. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2011). http://drops.dagstuhl.de/opus/volltexte/2011/2995
  3. 3.
    Almeida, F., Blanco, V., Cabrera, A., Ruiz, J.: Modeling energy consumption for master-slave applications. J. Supercomput. 65(3), 1137–1149 (2013)CrossRefGoogle Scholar
  4. 4.
    Bansal, N., Kimbrel, T., Pruhs, K.: Dynamic speed scaling to manage energy and temperature. In: 45th Annual IEEE Symposium on Foundations of Computer Science, 2004. Proceedings, pp. 520–529, October 2004Google Scholar
  5. 5.
    Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. Computer 12, 33–37 (2007)CrossRefGoogle Scholar
  6. 6.
    Cotta, C., Fernández-Leiva, A., de Vega, F.F., Chávez, F., Merelo, J., Castillo, P., Bello, G., Camacho, D.: Ephemeral computing and bioinspired optimization - challenges and opportunities. In: 7th International Joint Conference on Evolutionary Computation Theory and Applications, pp. 319–324. SCITEPRESS, Lisboa (2015)Google Scholar
  7. 7.
    Fadaee, M., Radzi, M.: Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: a review. Renew. Sustain. Energy Rev. 16(5), 3364–3369 (2012). http://www.sciencedirect.com/science/article/pii/S1364032112001669 CrossRefGoogle Scholar
  8. 8.
    Fong, K., Hanby, V., Chow, T.: HVAC system optimization for energy management by evolutionary programming. Energy Build. 38(3), 220–231 (2006). http://www.sciencedirect.com/science/article/pii/S0378778805000939 CrossRefGoogle Scholar
  9. 9.
    García-Valdez, M., Trujillo, L., Merelo, J.J., Fernández de Vega, F., Olague, G.: The evospace model for pool-based evolutionary algorithms. J. Grid Comput. 13(3), 329–349 (2015). http://dx.doi.org/10.1007/s10723-014-9319-2
  10. 10.
    Hooper, A.: Green computing. Commun. ACM 51(10), 11–13 (2008)CrossRefGoogle Scholar
  11. 11.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  12. 12.
    Lee, W.S., Chen, Y.T., Kao, Y.: Optimal chiller loading by differential evolution algorithm for reducing energy consumption. Energy Build. 43(23), 599–604 (2011). http://www.sciencedirect.com/science/article/pii/S0378778810003804 CrossRefGoogle Scholar
  13. 13.
    de Vega, F.F., Pérez, J.I.H., Lanchares, J.: Parallel Architectures and Bioinspired Algorithms, vol. 122. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Yoo, C.M., Sungjoo, K.: Energy-Aware System Design. Springer, Houten (2011)Google Scholar
  15. 15.
    Zhang, L., Tiwana, B., Dick, R.P., Qian, Z., Mao, Z.M., Wang, Z., Yang, L.: Accurate online power estimation and automatic battery behavior based power model generation for smartphones. In: 2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 105–114, October 2010Google Scholar
  16. 16.
    Álvarez, J.D., Risco-Martín, J.L., Colmenar, J.M.: Multi-objective optimization of energy consumption and execution time in a single level cache memory for embedded systems. J. Syst. Softw. 111, 200–212 (2016). http://www.sciencedirect.com/science/article/pii/S0164121215002241 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • F. Fernández de Vega
    • 1
  • F. Chávez
    • 1
    Email author
  • J. Díaz
    • 1
  • J. A. García
    • 1
  • P. A. Castillo
    • 2
  • Juan J. Merelo
    • 2
  • C. Cotta
    • 3
  1. 1.Universidad de ExtremaduraBadajozSpain
  2. 2.ETSI Informática, Universidad de GranadaGranadaSpain
  3. 3.ETSI Informática, Campus de Teatinos, Universidad de MálagaMálagaSpain

Personalised recommendations