Evolution Under Strong Noise: A Self-Adaptive Evolution Strategy Can Reach the Lower Performance Bound - The pcCMSA-ES

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9921)

Abstract

According to a theorem by Astete-Morales, Cauwet, and Teytaud, “simple Evolution Strategies (ES)” that optimize quadratic functions disturbed by additive Gaussian noise of constant variance can only reach a simple regret log-log convergence slope \(\ge -1/2\) (lower bound). In this paper a population size controlled ES is presented that is able to perform better than the \(-1/2\) limit. It is shown experimentally that the pcCMSA-ES is able to reach a slope of \(-1\) being the theoretical lower bound of all comparison-based direct search algorithms.

References

  1. 1.
    Arnold, D.V.: Noisy Optimization with Evolution Strategies. Kluwer, Amsterdam (2002)CrossRefMATHGoogle Scholar
  2. 2.
    Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE Trans. Evolut. Comput. 9(3), 303–317 (2005)CrossRefGoogle Scholar
  3. 3.
    Beyer, H.-G., Arnold, D.V., Meyer-Nieberg, S.: A new approach for predicting the final outcome of evolution strategy optimization under noise. Genet. Progr. Evol. Mach. 6(1), 7–24 (2005)CrossRefGoogle Scholar
  4. 4.
    Beyer, H.-G., Sendhoff, B.: Evolution strategies for robust optimization. In: 2006 IEEE Congress on Evolutionary Computation CEC 2006, pp. 1346–1353 (2006)Google Scholar
  5. 5.
    Hansen, N., Niederberger, A.S.P., Guzzella, L., Koumoutsakos, P.: A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. IEEE Trans. Evolut. Comput. 13(1), 180–197 (2009)CrossRefGoogle Scholar
  6. 6.
    Beyer, H.-G., Sendhoff, B.: Covariance matrix adaptation revisited – the CMSA evolution strategy. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 123–132. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Astete-Morales, S., Cauwet, M.-L., Teytaud, O.: Evolution strategies with additive noise: a convergence rate lower bound. In: Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII, FOGA 2015, pp. 76–84. ACM, New York (2015)Google Scholar
  8. 8.
    Shamir, O.: On the complexity of bandit and derivative-free stochastic convex optimization. In: COLT 2013 - The 26th Annual Conference on Learning Theory, NJ, USA, pp. 3–24 (2013)Google Scholar
  9. 9.
    Kenney, J.F.: Mathematics of Statistics: Parts 1–2. Literary Licensing, LLC, New York (2013)Google Scholar
  10. 10.
    Beyer, H.-G., Melkozerov, A.: The dynamics of self-adaptive multi-recombinant evolution strategies on the general ellipsoid model. IEEE Trans. Evolut. Comput. 18(5), 764–778 (2014)CrossRefGoogle Scholar
  11. 11.
    Beyer, H.-G.: The Theory of Evolution Strategies. Natural Computing Series. Springer, Heidelberg (2001)CrossRefMATHGoogle Scholar
  12. 12.
    Melkozerov, A., Beyer, H.-G.: Towards an analysis of self-adaptive evolution strategies on the noisy ellipsoid model: progress rate and self-adaptation response. In: GECCO 2015, Madrid, Spain, pp. 297–304. ACM (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Vorarlberg University of Applied Sciences, Research Center PPEDornbirnAustria

Personalised recommendations