Advertisement

Kin Selection with Twin Genetic Programming

  • William B. LangdonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9921)

Abstract

In steady state Twin GP both children created by sub-tree crossover and point mutation are used. They are born together and die together. Evolution is little changed. Indeed fitness selection using the twin’s co-conceived doppelganger is possible.

Keywords

Theory Genetic programming Artificial intelligence Emergent behaviour TinyGP Steady state evolution 

Notes

Acknowledgements

I am grateful for discussions with T.H. Westerdale.

References

  1. Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary algorithms. Evolut. Comput. 4(4), 361–394 (1996). http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_ec_BlickleT96.html Google Scholar
  2. Dignum, S., Poli, R.: Sub-tree swapping crossover and arity histogram distributions. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 38–49. Springer, Heidelberg (2010). http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Dignum_2010_EuroGP.html
  3. Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural Selection. MIT press, Cambridge (1992). http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_book.html
  4. Langdon, W.B., Poli, R.: Fitness causes bloat. In: Chawdhry, P.K., et al. (eds.) Soft Computing in Engineering Design and Manufacturing, pp. 13–22. Springer, London (1997). http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_1997_bloatWSC2.html Google Scholar
  5. Langdon, W.B., Soule, T., Poli, R., Foster, J.A.: The evolution of size and shape. In: Spector, L., et al. (eds.) Advances in Genetic Programming 3, pp. 163–190. MIT Press, Cambridge (1999). Chapter 8. http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_1999_aigp3.html
  6. Langdon, W.B.: The distribution of reversible functions is Normal. In: Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and Practice, pp. 173–187. Kluwer, Boston (2003). Chapter 11. http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2003_normal.html Google Scholar
  7. Langdon, W.B.: Scaling of program functionality. Genet. Program. Evolvable Mach. 10(1), 5–36 (2009). http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2007_gpem.html Google Scholar
  8. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming (2008). (With contributions by Koza, J.R.) http://lulu.com and freely http://www.gp-field-guide.org.uk, http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
  9. Syswerda, G.: Uniform crossover in genetic algorithms. In: David Schaffer, J. (ed.) Proceedings of the Third International Conference on Genetic Algorithms, pp. 2–9. George Mason University, Morgan Kaufmann, 4–7 June 1989Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.CREST, Department of Computer ScienceUniversity College LondonLondonUK

Personalised recommendations