Plasmon Particle Array Lasers

  • Y. Hadad
  • A. H. Schokker
  • F. van Riggelen
  • A. Alù
  • A. F. Koenderink
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 185)


Diffractive arrays of strongly scattering noble metal particles coupled to a high-index slab of gain material can form the basis for plasmonic distributed feedback lasers. In this chapter, we discuss recent theoretical and experimental results describing the electromagnetic properties of these structures. Particularly, we investigate bandgap topology versus detuning between the plasmonic and Bragg resonances. We examine the complex dispersion relation, accounting for the fact that the particles are electrodynamic scatterers with radiation loss, that couple via a stratified medium system supporting guided modes. From the complex dispersion of this array we can deduce loss and outcoupling properties of the various Bloch modes, giving a handle on its lasing properties. From the experimental side, we show how to measure the dispersion relation using fluorescence microscopy, and systematically examine the array dispersion for realized plasmonic lasers as function of detuning between particle and lattice resonance. We conclude the chapter with a vision towards employing disordered, quasiperiodic and random plasmonic arrays to induce different optical responses, and experimentally demonstrate the exceptional robustness of lasing to disorder in these systems.


Surface Enhance Raman Scattering Waveguide Mode Gain Medium Internal Quantum Efficiency Bragg Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Royal Dutch Academy of Sciences (KNAW), the U.S. Air Force Office of Scientific Research and the Welch Foundation with grant No. F-1802.


  1. 1.
    A.E. Siegman, Lasers (University Science Books, 1986)Google Scholar
  2. 2.
    G.A. Turnbull, P. Andrew, M.J. Jory, W.L. Barnes, I.D.W. Samuel, Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser. Phys. Rev. B 64, 125122 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    D.S. Wiersma, The physics and applications of random lasers. Nat. Phys. 4, 359–367 (2008)CrossRefGoogle Scholar
  4. 4.
    I.D.W. Samuel, G.A. Turnbull, Organic semiconductor lasers. Chem. Rev. 107, 1272 (2007)CrossRefGoogle Scholar
  5. 5.
    G. Heliotis, R. Xia, G.A. Turnbull, P. Andrews, I.D.W. Barnes, D.D.C. Bradley, Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback. Adv. Funct. Mater. 14, 91–97 (2004)CrossRefGoogle Scholar
  6. 6.
    P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, D. Pisignano, Near-infrared imprinted distributed feedback lasers. Appl. Phys. Lett. 89, 201105 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    E. Mele, A. Camposeo, R. Stabile, P. Del Carro, F. Di Benedetto, L. Persano, R. Cingolani, D. Pisignano, Polymeric distributed feedback lasers by room-temperature nanoimprint lithography. Appl. Phys. Lett. 89, 131109 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)Google Scholar
  9. 9.
    G.M. Akselrod, C. Argyropoulos, T.B. Hoang, C. Cirac, C. Fang, J. Huang, D.R. Smith, M.H. Mikkelsen, Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics 8, 835 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, A. Maitre, Controlling spontaneous emission with plasmonic optical patch antennas. Nano Lett. 13, 1516 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    E.J.R. Vesseur, J.F. Garcia de Abajo, A. Polman, Broadband purcell enhancement in plasmonic ring cavities. Phys. Rev. B 82, 165419 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    D.J. Bergman, M.I. Stockman, Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    M.T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P.J. Van Veldhoven, F.W.M. Van Otten, T.J. Eijkemans, J.P. Turkiewicz, H. De Waardt, E.J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, M.K. Smit, Lasing in metallic-coated nanocavities. Nat. Photonics 1, 589 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    M.T. Hill, M. Marell, E.S.P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P.J. van Veldhoven, E.J. Geluk, F. Karouta, Y.-S. Oei, R. Notzel, C.-Z. Ning, M.K. Smit, Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    M. Khajavikhan, A. Simic, M. Katz, J.H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, Thresholdless nanoscale coaxial lasers. Nature 482, 204 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    P. Berini, I. De Leon, Surface plasmon-polariton amplifiers and lasers. Nat. Photonics 6, 16 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    S. Murai, M.A. Verschuuren, G. Lozano, G. Pirruccio, S.R.K. Rodriguez, J.G. Rivas, Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides. Opt. Express 21, 4250 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    G. Vecchi, V. Giannini, J.G. Rivas, Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys. Rev. Lett. 102, 146807 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    A.G. Nikitin, A.V. Kabashin, H. Dallaporta, Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects. Opt. Express 20, 27941 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    P.L. Stiles, J.A. Dieringer, N.C. Shah, R.R. Van Duyne, Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601 (2008)CrossRefGoogle Scholar
  21. 21.
    M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, R.G. Nuzzo, Nanostructured plasmonic sensors. Chem. Rev. 108, 494 (2008)CrossRefGoogle Scholar
  22. 22.
    J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    G. Lozano, D.J. Louwers, S.R.K. Rodriguez, S. Murai, O.T.A. Jansen, M.A. Verschuuren, J.G. Rivas, Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources. Light Sci. Appl. 2, e66 (2013)Google Scholar
  24. 24.
    W. Zhou, M. Dridi, J.Y. Suh, C.H. Kim, D.T. Co, M.R. Wasielewski, G.C. Schatz, T.W. Odom, Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotech. 8, 506–511 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    A.H. Schokker, A.F. Koenderink, Lasing at the band edges of plasmonic lattices. Phys. Rev. B 90(155452), 1–10 (2014)Google Scholar
  26. 26.
    A. Yang, T.B. Hoang, M. Dridi, C. Deeb, M.H. Mikkelsen, G.C. Schatz, T.W. Odom, Real-time tunable lasing from plasmonic nanocavity arrays. Nat. Commun. 6, 1–7 (2015)Google Scholar
  27. 27.
    K.W.-K. Shung, Y.C. Tsai, Surface effects and band measurements in photonic crystals. Phys. Rev. B 48, 11265Google Scholar
  28. 28.
    H. Kogelnik, C. Shank, Stimulated emission in a periodic structure. Appl. Phys. Lett. 18, 152 (1971)ADSCrossRefGoogle Scholar
  29. 29.
    I. Sersic, C. Tuambilangana, A.F. Koenderink, Fourier microscopy of single plasmonic scatterers. New J. Phys. 13(083019), 1–14 (2011)Google Scholar
  30. 30.
    Y. Fontana, G. Grzela, E.P.A.M. Bakkers, G.J. Rivas, Mapping the directional emission of quasi-two-dimensional photonic crystals of semiconductor nanowires using Fourier microscopy. Phys. Rev. B 86, 245303 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    J.A. Kurvits, M. Jiang, R. Zia, Comparative analysis of imaging configurations and objectives for Fourier microscopy. J. Opt. Soc. Am. A 32, 2082–2092 (2015)Google Scholar
  32. 32.
    T.H. Taminiau, S. Karaveli, N.F. van Hulst, R. Zia, Quantifying the magnetic nature of light emission. Nat. Commun. 3, 979 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    J.Y. Suh, C.H. Kim, W. Zhou, M.D. Huntington, D.T. Co, M.R. Wasielewski, T.W. Odom, Plasmonic bowtie nanolaser arrays. Nano Lett. 12, 5769–5774 (2012)Google Scholar
  34. 34.
    S.R.K. Rodriguez, S. Murai, M.A. Verschuuren, G.J. Rivas, Light-emitting waveguide plasmon polaritons. Phys. Rev. Lett. 109, 166803 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    F.J. García de Abajo, Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    M. Agio, A. Alù, Optical Antennas (Cambridge University Press, 2013)Google Scholar
  37. 37.
    L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006)Google Scholar
  38. 38.
    Y. Hadad, B. Z. Steinberg, Electrodynamic synergy of micro-properties and macro-structure in particle arrays, 2010 URSI international symposium on electromagnetic theory. Berlin, Germany (2010)Google Scholar
  39. 39.
    M.J. Weber, Handbook of Optical Constants of Materials (CRC Press, 2003)Google Scholar
  40. 40.
    A.H. Schokker, A.F. Koenderink, Statistics of randomized plasmonic lattice lasers. ACS Photonics 2, 1289–1297 (2015)CrossRefGoogle Scholar
  41. 41.
    K. Guo, M.A. Verschuuren, A.F. Koenderink, Superresolution imaging of local density of states in plasmon lattices. Optica (2016)Google Scholar
  42. 42.
    G. Pirruccio, M. Ramezani, S.R.K. Rodriguez, Coherent control of the optical absorption in a plasmonic lattice coupled to a luminescent layer. Phys. Rev. Lett. (2016)Google Scholar
  43. 43.
    M.G. Conley, M. Burresi, F. Pratesi, K. Vynck, D.S. Wiersma, Light transport and localization in two-dimensional correlated disorder. Phys. Rev. Lett. 112, 143901 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    N. Bachelard, J. Andreasen, S. Gigan, P. Sebbah, Taming random lasers through active spatial control of the pump. Phys. Rev. Lett. 109, 033903 (2012)Google Scholar
  45. 45.
    H. Noh, J.K.-K. Yang, S.V. Boriskina, M.J. Rooks, G.S. Solomon, L. Dal Negro, H. Cao, Lasing in Thue-Morse structures with optimized aperiodicity. Appl. Phys. Lett. 98, 201109 (2011)Google Scholar
  46. 46.
    L. Dal Negro, S.V. Boriskina, Deterministic aperiodic nanostructures for photonics and plasmonics applications. Laser Photon. Rev. 6, 178–218 (2011)CrossRefGoogle Scholar
  47. 47.
    Dainty, J. C., editor: Laser Speckle and Related Phenomena. Topics in Applied Physics. Springer (1975)Google Scholar
  48. 48.
    E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, A. Sentenac, Structured illumination microscopy using unknown speckle patterns. Nat. Photonics 5, 312–315 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    H. Yilmaz, E.G. van Putten, J. Bertolotti, A. Lagendijk, W.L. Vos, A.P. Mosk, Speckle correlation resolution enhancement of wide-field fluorescence imaging. Optica 5, 424–429 (2015)CrossRefGoogle Scholar
  50. 50.
    F. Capolino, D.R. Wilton, W.A. Johnson, Efficient computation of the 2-D green’s function for 1-D periodic structures using the Ewald method. IEEE Trans. Ant. Prop. 53(9), 2977–2984 (2005)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    K.E. Jordan, G.R. Richter, P. Sheng, An efficient numerical evaluation of the green’s function for the Helmholtz operator on periodic structure. J. Comput. Phys. 63, 222–235 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    S. Steshenko, F. Capolino, P. Alitalo, S. Tretyakov, Effective model and investigation of the near field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres. Phys. Rev. E 84, 016607 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringThe University of Texas at Austin, UTA 7.215AustinUSA
  2. 2.Center for NanophotonicsFOM Institute AMOLFAmsterdamThe Netherlands

Personalised recommendations