Advertisement

Similarity Recoverable, Format-Preserving String Encryption

  • Yijin Li
  • Wendy Hui Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9932)

Abstract

Format-preserving encryption (FPE) encrypts a plaintext of some specified format into a ciphertext of identical format. In this paper, we consider FPE on string data, and design new FPE algorithms that preserve the string similarity for a large number of string metrics. The experiments show that our encryption algorithm is efficient and robust against the frequency analysis attack.

Notes

Acknowledgment

This material is based upon work supported by the U.S. National Science Foundation under Grant No. 1464800.

References

  1. 1.
    Aggarwal, C.C., Philip, S.Y.: On anonymization of string data. In: SDM, pp. 419–424 (2007)Google Scholar
  2. 2.
    Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In: Proceedings of the 21st International Conference on Data Engineering, pp. 217–228 (2005)Google Scholar
  3. 3.
    Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryption. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 295–312. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Black, J.A., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Brier, E., Peyrin, T., Stern, J.: BPS: a format-preserving encryption proposal (2010). http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
  6. 6.
    Churches, T., Christen, P.: Some methods for blindfolded record linkage. BMC Med. Inf. Decis. Mak. 4(1), 1 (2004)CrossRefGoogle Scholar
  7. 7.
    Samarati, P.: Protecting respondents identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001)CrossRefGoogle Scholar
  8. 8.
    Scannapieco, M., Figotin, I., Bertino, E., Elmagarmid, A.K.: Privacy preserving schema and data matching. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 653–664 (2007)Google Scholar
  9. 9.
    Wang, J., Kraska, T., Franklin, M.J., Feng, J.: Crowder: crowdsourcing entity resolution. Proc. VLDB Endowment 5(11), 1483–1494 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceStevens Institute of TechnologyHobokenUSA

Personalised recommendations