Advertisement

Practical Study of Subclasses of Regular Expressions in DTD and XML Schema

  • Yeting Li
  • Xiaolan Zhang
  • Feifei Peng
  • Haiming Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9932)

Abstract

DTD and XSD are two popular schema languages widely used in XML documents. Most content models used in DTD and XSD essentially consist of restricted subclasses of regular expressions. However, existing subclasses of content models are all defined on standard regular expressions without considering counting and interleaving. Through the investigation on the real world data, this paper introduces a new subclass of regular expressions with counting and interleaving. Then we give a practical study on this new subclass and five already known subclasses of content models. One distinguishing feature of this paper is that the data set is sufficiently large compared with previous relevant work. Therefore our results are more accurate. In addition, based on this large data set, we analyze the different features of regular expressions used in practice. Meanwhile, we are the first to simultaneously inspect the usage of the five subclasses and analyze different reasons dissatisfying the corresponding definitions. Furthermore, since W3C standard requires the content models to be deterministic, the determinism of content models is also tested by our validation tools.

Keywords

XML DTD XML schema Interleaving Counting 

References

  1. 1.
    Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured Data and XML. Morgan Kaufmann, Burlington (2000)Google Scholar
  2. 2.
    Bala, S.: Intersection of regular languages and star hierarchy. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 159–169. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Benedikt, M., Fan, W., Geerts, F.: XPath satisfiability in the presence of DTDs. J. ACM (JACM) 55(2), 8 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bex, G.J., Gelade, W., Neven, F., Vansummeren, S.: Learning deterministic regular expressions for the inference of schemas from XML data. ACM Trans. Web (TWEB) 4(4), 14 (2010)Google Scholar
  5. 5.
    Bex, G.J., Martens, W., Neven, F., Schwentick, T.: Expressiveness of XSDs: from practice to theory, there and back again. In: Proceedings of the 14th International Conference on World Wide Web, pp. 712–721. ACM (2005)Google Scholar
  6. 6.
    Bex, G.J., Neven, F., Van den Bussche, J.: DTDs versus XML schema: a practical study. In: Proceedings of the 7th International Workshop on the Web and Databases: Colocated with ACM SIGMOD/PODS 2004, pp. 79–84. ACM (2004)Google Scholar
  7. 7.
    Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of concise DTDs from XML data. In: Proceedings of the 32nd International Conference on Very Large Data Bases, pp. 115–126. VLDB Endowment (2006)Google Scholar
  8. 8.
    Bex, G.J., Neven, F., Schwentick, T., Vansummeren, S.: Inference of concise regular expressions and DTDs. ACM Trans. Database Syst. (TODS) 35(2), 11 (2010)CrossRefGoogle Scholar
  9. 9.
    Bex, G.J., Neven, F., Vansummeren, S.: Inferring XML schema definitions from XML data. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 998–1009. VLDB Endowment (2007)Google Scholar
  10. 10.
    Björklund, H., Martens, W., Timm, T.: Efficient incremental evaluation of succinct regular expressions. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1541–1550. ACM (2015)Google Scholar
  11. 11.
    Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inf. Comput. 140(2), 229–253 (1998)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Che, D., Aberer, K., Özsu, M.T.: Query optimization in XML structured-document databases. VLDB J. 15(3), 263–289 (2006)CrossRefGoogle Scholar
  13. 13.
    Chen, H., Lu, P.: Checking determinism of regular expressions with counting. Inf. Comput. 241, 302–320 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Choi, B.: What are real DTDs like. Technical reports (CIS), p. 17 (2002)Google Scholar
  15. 15.
    Feng, X.Q., Zheng, L.X., Chen, H.M.: Inference algorithm for a restricted class of regular expressions. Comput. Sci. 41(4), 178–183 (2014)Google Scholar
  16. 16.
    Gelade, W., Gyssens, M., Martens, W.: Regular expressions with counting: weak versus strong determinism. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 369–381. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Ghelli, G., Colazzo, D., Sartiani, C.: Efficient inclusion for a class of XML types with interleaving and counting. In: Arenas, M. (ed.) DBPL 2007. LNCS, vol. 4797, pp. 231–245. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Ghelli, G., Colazzo, D., Sartiani, C.: Linear time membership in a class of regular expressions with interleaving and counting. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 389–398. ACM (2008)Google Scholar
  19. 19.
    Kilpeläinen, P.: Checking determinism of XML schema content models in optimal time. Inf. Syst. 36(3), 596–617 (2011)CrossRefGoogle Scholar
  20. 20.
    Koch, C., Scherzinger, S., Schweikardt, N., Stegmaier, B.: Schema-based scheduling of event processors and buffer minimization for queries on structured data streams. In: Proceedings of the 30th International Conference on Very Large Data Bases, vol. 30, pp. 228–239. VLDB Endowment (2004)Google Scholar
  21. 21.
    Manolescu, I., Florescu, D., Kossmann, D.: Answering XML queries on heterogeneous data sources. VLDB 1, 241–250 (2001)Google Scholar
  22. 22.
    Martens, W., Neven, F.: Typechecking top-down uniform unranked tree transducers. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 64–78. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Martens, W., Neven, F.: Frontiers of tractability for typechecking simple XML transformations. In: Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 23–34. ACM (2004)Google Scholar
  24. 24.
    Martens, W., Neven, F., Schwentick, T.: Complexity of decision problems for simple regular expressions. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 889–900. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Martens, W., Neven, F., Schwentick, T.: Complexity of decision problems for XML schemas and chain regular expressions. SIAM J. Comput. 39(4), 1486–1530 (2009)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Martens, W., Neven, F., Schwentick, T., Bex, G.J.: Expressiveness and complexity of XML schema. ACM Trans. Database Syst. (TODS) 31(3), 770–813 (2006)CrossRefGoogle Scholar
  27. 27.
    Papakonstantinou, Y., Vianu, V.: DTD inference for views of XML data. In: Proceedings of the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 35–46. ACM (2000)Google Scholar
  28. 28.
    Peng, F., Chen, H., Mou, X.: Deterministic regular expressions with interleaving. In: Rueda, C., et al. (eds.) ICTAC 2015. LNCS, vol. 9399, pp. 203–220. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25150-9_13 CrossRefGoogle Scholar
  29. 29.
    Sperberg-McQueen, C.: Applications of Brzozowski derivatives to XML schema processing. In: Extreme Markup Languages\(\textregistered \), Citeseer (2005)Google Scholar
  30. 30.
    Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.: XML schema part 1: structures. 2nd edn. W3C Recommendation (2004)Google Scholar
  31. 31.
    Wang, G., Liu, M., Yu, G., Sun, B., Yu, G., Lv, J., Lu, H.: Effective schema-based XML query optimization techniques. In: 2003 Proceedings of Seventh International Database Engineering and Applications Symposium, pp. 230–235. IEEE (2003)Google Scholar
  32. 32.
    XML: XML.org Registry (2002). http://www.xml.org/xml/registry.jsp/

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yeting Li
    • 2
  • Xiaolan Zhang
    • 1
    • 2
  • Feifei Peng
    • 1
    • 2
  • Haiming Chen
    • 1
  1. 1.State Key Laboratory of Computer Science, Institute of SoftwareChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations