Advertisement

EPLA: Efficient Personal Location Anonymity

  • Dapeng Zhao
  • Kai Zhang
  • Yuanyuan Jin
  • Xiaoling Wang
  • Patrick C. K. Hung
  • Wendi Ji
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9932)

Abstract

A lot of researchers utilize side-information, such as map which is likely to be exploited by some attackers, to protect users’ location privacy in location-based service (LBS). However, current technologies universally model the side-information for all users. We argue that the side-information is personal for every user. In this paper, we propose an efficient method, namely EPLA, to protect the users’ privacy using visit probability. We selected the dummy locations to achieve k-anonymity according to personal visit probability for users’ queries. AKDE greatly reduces the computational complexity compared with KDE approach. We conduct comprehensive experimental study on the realistic Gowalla data sets and the experimental results show that EPLA obtains fine privacy performance and efficiency.

Keywords

LBS Privacy Anonymity KDE Cloaking region 

Notes

Acknowledgment

This work was supported by NSFC grants (No. 61532021, 61472141 and 61021004), Shanghai Knowledge Service Platform Project (No. ZF1213), Shanghai Leading Academic Discipline Project (Project NumberB412) and Shanghai Agriculture Science Program (2016) Number 2-1.

References

  1. 1.
    Ashouri-Talouki, M., Baraani-Dastjerdi, A., Seluk, A.A.: The cloaked-centroid protocol: location privacy protection for a group of users of location-based services. Knowl. Inf. Syst. (2015)Google Scholar
  2. 2.
    Pan, X., Xu, J., Meng, X.: Protecting location privacy against location-dependent attacks in mobile services. TKDE 24, 1506–1519 (2012)Google Scholar
  3. 3.
    Lu, H., Jensen, C.S., Yiu, M.L.: Pad: privacy-area aware, dummy-based location privacy in mobile services. In: Proceedings of the Seventh ACM International Workshop on Data Engineering for Wireless and Mobile Access. ACM (2008)Google Scholar
  4. 4.
    Niu, B., Li, Q., Zhu, X., et al.: Achieving k-anonymity in privacy-aware location-based services. In: 2014 IEEE Proceedings of INFOCOM. IEEE (2014)Google Scholar
  5. 5.
    Lee, B., Oh, J., Yu, H., et al.: Protecting location privacy using location semantics. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2011)Google Scholar
  6. 6.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. CRC, London (1986)CrossRefzbMATHGoogle Scholar
  7. 7.
    Zhang, J.D., Chow, C.Y.: iGSLR: personalized geo-social location recommendation: a kernel density estimation approach. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (2013)Google Scholar
  8. 8.
    Jia, J., Zhang, F.: K-anonymity algorithm using encryption for location privacy protection. Int. J. Multimedia Ubiquit. Eng. 10, 155–166 (2015)CrossRefGoogle Scholar
  9. 9.
    Gruteser, M., Grunwald, D., Wang, Y., Xu, D., He, X., et al.: L2P2: location-aware location privacy protection for location-based services. In: INFOCOM (2012)Google Scholar
  10. 10.
    Palanisamy, B., Liu, L.: Attack-resilient mix-zones over road networks: architecture and algorithms. IEEE Trans. Mob. Comput. 14, 495–508 (2015)CrossRefGoogle Scholar
  11. 11.
    Guo, M., Pissinou, N., Iyengar, S.S.: Pseudonym-based anonymity zone generation for mobile service with strong adversary model. In: Consumer Communications and Networking Conference (CCNC) (2015)Google Scholar
  12. 12.
    Kido, H., Yanagisawa, Y., Satoh, T.: An anonymous communication technique using dummies for location-based services. In: Proceedings of International Conference on Pervasive Services, ICPS 2005. IEEE (2005)Google Scholar
  13. 13.
    Ghinita, G., Kalnis, P., Khoshgozaran, A., et al.: Private queries in location based services: anonymizers are not necessary. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. ACM (2008)Google Scholar
  14. 14.
    Jia, J.: K-anonymity algorithm using encryption for location privacy protection. Int. J. Multimedia Ubiquit. Eng. (2015)Google Scholar
  15. 15.
    Li, X.Y., Jung, T.: Search me if you can: privacy-preserving location query service. In: 2013 IEEE Proceedings of INFOCOM. IEEE (2013)Google Scholar
  16. 16.
    Clifton, C., Tassa, T.: On syntactic anonymity and differential privacy. In: 2013 IEEE 29th International Conference on Data Engineering Workshops. IEEE (2013)Google Scholar
  17. 17.
    Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., et al.: Geo-indistinguishability: differential privacy for location-based systems. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer Communications Security (2013)Google Scholar
  18. 18.
    Greengard, L., Strain, J.: The fast Gauss transform. SIAM J. Sci. Stat. Comput. 12, 79–94 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Cho, E, Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2011)Google Scholar
  20. 20.
    Pukelsheim, F.: The three sigma rule. Am. Stat. 48, 88–91 (1994)MathSciNetGoogle Scholar
  21. 21.
    Indritz, J.: An inequality for Hermite polynomials. Proc. Am. Math. Soc. 12, 981–983 (1961)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Dapeng Zhao
    • 1
  • Kai Zhang
    • 1
  • Yuanyuan Jin
    • 1
  • Xiaoling Wang
    • 1
  • Patrick C. K. Hung
    • 2
  • Wendi Ji
    • 1
  1. 1.Shanghai Key Laboratory of Trustworthy Computing, Institute for Data Science and EngineeringEast China Normal UniversityShanghaiChina
  2. 2.Faculty of Business and Information TechnologyUniversity of Ontario Institute of Technology (UOIT)OshawaCanada

Personalised recommendations