An Online Approach for Direction-Based Trajectory Compression with Error Bound Guarantee

  • Bingqing Ke
  • Jie Shao
  • Yi Zhang
  • Dongxiang Zhang
  • Yang Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9931)

Abstract

With the increasing usage of GPS-enabled devices which can record users’ travel experiences, moving object trajectories are collected in many applications. Raw trajectory data can be of large volume but storage is limited, and direction-based compression to preserve the skeleton of a trajectory became popular recently. In addition, real-time applications and constrained resources often require online processing of incoming data instantaneously. To address this challenge, in this paper we first investigate two approaches extended from Douglas-Peucker and Greedy Deviation algorithms respectively, which are two most popular algorithms for trajectory compression. To further improve the online computational efficiency, we propose a faster approximate algorithm with error bound guarantee named Angular-Deviation. Experimental results demonstrate it can achieve low running time to suit the most constrained computation environments.

Keywords

GPS trajectory Direction-based compression Online algorithm 

References

  1. 1.
    Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can. Cartographer 10(2), 112–122 (1973)CrossRefGoogle Scholar
  2. 2.
    Heckbert, P.S., Garland, M.: Survey of polygonal surface simplification algorithms. Technical report, Carnegie Mellon University (1997)Google Scholar
  3. 3.
    Jiang, W., Zhu, J., Xu, J., Li, Z., Zhao, P., Zhao, L.: HV: a feature based method for trajectory dataset profiling. In: Cellary, W., Wang, D., Wang, H., Chen, S.-C., Li, T., Zhang, Y. (eds.) WISE 2015. LNCS, vol. 9418, pp. 46–60. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26190-4_4 CrossRefGoogle Scholar
  4. 4.
    Keogh, E.J., Chu, S., Hart, D.M., Pazzani, M.J.: An online algorithm for segmenting time series. In: ICDM, pp. 289–296 (2001)Google Scholar
  5. 5.
    Kolesnikov, A.: Efficient online algorithms for the polygonal approximation of trajectory data. In: MDM, pp. 49–57 (2011)Google Scholar
  6. 6.
    Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., Jurdak, R.: Bounded quadrant system: error-bounded trajectory compression on the go. In: ICDE, pp. 987–998 (2015)Google Scholar
  7. 7.
    Long, C., Wong, R.C., Jagadish, H.V.: Direction-preserving trajectory simplification. PVLDB 6(10), 949–960 (2013)Google Scholar
  8. 8.
    Long, C., Wong, R.C., Jagadish, H.V.: Trajectory simplification: on minimizing the direction-based error. PVLDB 8(1), 49–60 (2014)Google Scholar
  9. 9.
    Meratnia, N., Park, Y.-Y.: Spatiotemporal compression techniques for moving point objects. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 765–782. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Muckell, J., Hwang, J., Patil, V., Lawson, C.T., Ping, F., Ravi, S.S.: SQUISH: an online approach for GPS trajectory compression. In: COM.Geo, pp. 13:1–13:8 (2011)Google Scholar
  11. 11.
    Muckell, J., Olsen, P.W., Hwang, J., Lawson, C.T., Ravi, S.S.: Compression of trajectory data: a comprehensive evaluation and new approach. GeoInformatica 18(3), 435–460 (2014)CrossRefGoogle Scholar
  12. 12.
    Potamias, M., Patroumpas, K., Sellis, T.K.: Sampling trajectory streams with spatiotemporal criteria. In: SSDBM, pp. 275–284 (2006)Google Scholar
  13. 13.
    Yang, Y., Ma, Z., Yang, Y., Nie, F., Shen, H.T.: Multitask spectral clustering by exploring intertask correlation. IEEE Trans. Cybern. 45(5), 1069–1080 (2015)CrossRefGoogle Scholar
  14. 14.
    Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive: driving directions based on taxi trajectories. In: ACM-GIS, pp. 99–108 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bingqing Ke
    • 1
  • Jie Shao
    • 1
  • Yi Zhang
    • 1
  • Dongxiang Zhang
    • 1
  • Yang Yang
    • 1
  1. 1.School of Computer Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations