Mass Spectrometry Analysis Using MALDIquant

  • Sebastian Gibb
  • Korbinian StrimmerEmail author
Part of the Frontiers in Probability and the Statistical Sciences book series (FROPROSTAS)


MALDIquant and associated R packages provide a versatile and completely free open-source platform for analyzing 2D mass spectrometry data as generated, for instance, by MALDI and SELDI instruments. We first describe the various methods and algorithms available in MALDIquant. Subsequently, we illustrate a typical analysis workflow using MALDIquant by investigating an experimental cancer data set, starting from raw mass spectrometry measurements and ending at multivariate classification.


Linear Discriminant Analysis Peak Detection Dynamic Time Warping Mass Spectrometry Data Mass Spectrometry Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422, 198–207.CrossRefGoogle Scholar
  2. 2.
    Ahdesmäki, M., & Strimmer, K. (2010). Feature selection in omics prediction problems using cat scores and false nondiscovery rate control. The Annals of Applied Statistics, 4(1), 503–519.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Andrew, M. A. (1979). Another efficient algorithm for convex hulls in two dimensions. Information Processing Letters, 9, 216–219. Amsterdam: Elsevier.Google Scholar
  4. 4.
    Baggerly, K. A., Morris, J. S., & Coombes, K. R. (2004). Reproducibility of SELDI-TOF protein patterns in serum: Comparing datasets from different experiments. Bioinformatics, 20, 777–785.CrossRefGoogle Scholar
  5. 5.
    Bloemberg, T. G., Gerretzen, J., Wouters, H. J. P., Gloerich, J., van Dael, M., Wessels, H. J. C. T., et al. (2010). Improved parametric time warping for proteomics. Chemometrics and Intelligent Laboratory Systems, 104, 65–74.CrossRefGoogle Scholar
  6. 6.
    Bolstad, B. M., Irizarry, R. A., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19, 185–193.CrossRefGoogle Scholar
  7. 7.
    Borgaonkar, S. P., Hocker, H., Shin, H., & Markey, M. K. (2010). Comparison of normalization methods for the identification of biomarkers using MALDI-TOF and SELDI-TOF mass spectra. OMICS, 14, 115–126.CrossRefGoogle Scholar
  8. 8.
    Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.CrossRefzbMATHGoogle Scholar
  9. 9.
    Bromba, M. U. A., & Ziegler, H. (1981). Application hints for Savitzky–Golay digital smoothing filters. Analytical Chemistry, 53(11), 1583–1586.CrossRefGoogle Scholar
  10. 10.
    Callister, S. J., Barry, R. C., Adkins, J. N., Johnson, E. T., Qian, W.-J., Webb-Robertson, B.-J. M., et al. (2006). Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. Journal of Proteome Research, 5, 277–286.CrossRefGoogle Scholar
  11. 11.
    Chambers, M. C., Maclean, B., Burke, R., Amodei, D., Ruderman, D. L., Neumann, S., et al. (2012). A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 30(10), 918–920.CrossRefGoogle Scholar
  12. 12.
    Clifford, D., Montoliu, G. S. I., Rezzi, S., Martin, F.-P., Guy, P., Bruce, S., et al. (2009). Alignment using variable penalty dynamic time warping. Analytical Chemistry, 81, 1000–1007.CrossRefGoogle Scholar
  13. 13.
    Coombes, K. R., Tsavachidis, S., Morris, J. S., Baggerly, K. A., Hung, M.-C., & Kuerer, H. M. (2005). Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform. Proteomics, 5, 4107–4117.CrossRefGoogle Scholar
  14. 14.
    Cornett, D. S., Reyzer, M. L., Chaurand, P., & Caprioli, R. M. (2007). MALDI imaging mass spectrometry: Molecular snapshots of biochemical systems. Nature Methods, 4, 828–833.CrossRefGoogle Scholar
  15. 15.
    Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Analytical Chemistry, 78, 4281–4290.CrossRefGoogle Scholar
  16. 16.
    Du, P., Kibbe, W. A., & Lin, S. M. (2006). Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics, 22, 2059–2065.CrossRefGoogle Scholar
  17. 17.
    Du, P., Stolovitzky, G., Horvatovich, P., Bischoff, R., Lim, J., & Suits, F. (2008). A noise model for mass spectrometry based proteomics. Bioinformatics, 24, 1070–1077.CrossRefGoogle Scholar
  18. 18.
    Fiedler, G. M., Leichtle, A. B., Kase, J., Baumann, S., Ceglarek, U., Felix, K., et al. (2009). Serum peptidome profiling revealed platelet factor 4 as a potential discriminating peptide associated with pancreatic cancer. Clinical Cancer Research, 15, 3812–3819.CrossRefGoogle Scholar
  19. 19.
    Friedman, J. H. (1984). A variable span smoother. Technical Report, DTIC Document.Google Scholar
  20. 20.
    Gammerman, A., Nouretdinov, I., Burford, B., Chervonenkis, A., Vovk, V., & Luo, Z. (2008). Clinical mass spectrometry proteomic diagnosis by conformal predictors. Statistical Applications in Genetics and Molecular Biology, 7, 13.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gibb, S., & Strimmer, K. (2012). MALDIquant: A versatile R package for the analysis of mass spectrometry data. Bioinformatics, 28, 2270–2271.CrossRefGoogle Scholar
  22. 22.
    Gibb, S., & Strimmer, K. (2015). Differential protein expression and peak selection in mass spectrometry data by binary discriminant analysis. Bioinformatics, 31, 3156–3162.CrossRefGoogle Scholar
  23. 23.
    Gil, J. Y., & Kimmel, R. (2002). Efficient dilation, erosion, opening, and closing algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 1606–1617.CrossRefzbMATHGoogle Scholar
  24. 24.
    Gregori, J., Villarreal, L., Méndez, O., Sánchez, A., Baselga, J., & Villanueva, J. (2012). Batch effects correction improves the sensitivity of significance tests in spectral counting-based comparative discovery proteomics. Journal of Proteomics, 75(13), 3938–3951.CrossRefGoogle Scholar
  25. 25.
    He, Q. P., Wang, J., Mobley, J. A., Richman, J., & Grizzle, W. E. (2011). Self-calibrated warping for mass spectra alignment. Cancer Informatics, 10, 65–82.CrossRefGoogle Scholar
  26. 26.
    House, L. L., Clyde, M. A., & Wolpert, R. L. (2011). Bayesian nonparametric models for peak identification in MALDI-TOF mass spectroscopy. The Annals of Applied Statistics, 5, 1488–1511.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hu, J., Coombes, K. R., Morris, J. S., & Baggerly, K. A. (2005). The importance of experimental design in proteomic mass spectrometry experiments: Some cautionary tales. Briefings in Functional Genomics and Proteomics, 3, 322–331.CrossRefGoogle Scholar
  28. 28.
    Jeffries, N. (2005). Algorithms for alignment of mass spectrometry proteomic data. Bioinformatics, 21, 3066–3073.CrossRefGoogle Scholar
  29. 29.
    Kim, S., Koo, I., Fang, A., & Zhang, X. (2011). Smith-Waterman peak alignment for comprehensive two-dimensional gas chromatography-mass spectrometry. BMC Bioinformatics, 12, 235.CrossRefGoogle Scholar
  30. 30.
    Lange, E., Gröpl, C., Reinert, K., Kohlbacher, O., & Hildebrandt, A. (2006). High-accuracy peak picking of proteomics data using wavelet techniques. In Pacific Symposium on Biocomputing (Vol. 11, pp. 243–254).Google Scholar
  31. 31.
    Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., et al. (2010). Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics, 11, 733–739.CrossRefGoogle Scholar
  32. 32.
    Leichtle, A. B., Dufour, J.-F., & Fiedler, G. M. (2013). Potentials and pitfalls of clinical peptidomics and metabolomics. Swiss Medical Weekly, 143, w13801.Google Scholar
  33. 33.
    Li, X. (2005). PROcess: Ciphergen SELDI-TOF Processing. R package version 1.44.0.Google Scholar
  34. 34.
    Lilley, K. S., Deery, M. J., & Gatto, L. (2011). Challenges for proteomics core facilities. Proteomics, 11(6), 1017–1025.CrossRefGoogle Scholar
  35. 35.
    Lin, S. M., Haney, R. P., Campa, M. J., Fitzgerald, M. C., & Patz, E. F. (2005). Characterising phase variations in MALDI-TOF data & correcting them by peak alignment. Cancer Informatics, 1, 32–40.Google Scholar
  36. 36.
    Liu, Q., Krishnapuram, B., Pratapa, P., Liao, X., Hartemink, A., & Carin, L. (2003). Identification of differentially expressed proteins using MALDI-TOF mass spectra. Signals, Systems & Computers, 2003. Conference Record (Vol. 2, pp. 1323–1327).Google Scholar
  37. 37.
    Liu, Q., Sung, A. H., Qiao, M., Chen, Z., Yang, J. Y., Yang, M. Q., et al. (2009). Comparison of feature selection & classification for MALDI-MS data. BMC Genomics, 10(Suppl 1), S3.CrossRefGoogle Scholar
  38. 38.
    Liu, L. H., Shan, B. E., Tian, Z. Q., Sang, M. X., Ai, J., Zhang, Z. F., et al. (2010). Potential biomarkers for esophageal carcinoma detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clinical Chemistry & Laboratory Medicine, 486, 855–861.Google Scholar
  39. 39.
    Martens, L., Chambers, M., Sturm, M., Kessner, D., Levander, F., Shofstahl, J., et al. (2011). mzML–a community standard for mass spectrometry data. Molecular & Cellular Proteomics, 10, R110.000133.Google Scholar
  40. 40.
    Mertens, B. J. A., de Noo, M. E., Tollenaar, R. A. E. M., & Deelder, A. M. (2006). Mass spectrometry proteomic diagnosis: Enacting the double cross-validatory paradigm. Journal of Computational Biology, 13, 1591–1605.MathSciNetCrossRefGoogle Scholar
  41. 41.
    Meuleman, W., Engwegen, J. Y., Gast, M.-C. W., Beijnen, J. H., Reinders, M. J., & Wessels, L. F. (2008). Comparison of normalisation methods for surface-enhanced laser desorption and ionisation (SELDI) time-of-flight (TOF) mass spectrometry data. BMC Bioinformatics, 9, 88.CrossRefGoogle Scholar
  42. 42.
    Morhác, M. (2009). An algorithm for determination of peak regions and baseline elimination in spectroscopic data. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 600, 478–487.CrossRefGoogle Scholar
  43. 43.
    Morris, J. S., Baggerly, K. A., Gutstein, H. B., & Coombes, K. R. (2010). Statistical contributions to proteomic research. Methods in Molecular Biology, 641, 143–166.CrossRefGoogle Scholar
  44. 44.
    Morris, J. S., Coombes, K. R., Koomen, J., Baggerly, K. A., & Kobayashi, R. (2005). Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics, 21, 1764–1775.CrossRefGoogle Scholar
  45. 45.
    Norris, J. L., Cornett, D. S., Mobley, J. A., Andersson, M., Seeley, E. H., Chaurand, P., et al. (2007). Processing MALDI mass spectra to improve mass spectral direct tissue analysis. International Journal of Mass Spectrometry, 260, 212–221.CrossRefGoogle Scholar
  46. 46.
    Pedrioli, P. G. A., Eng, J. K., Hubley, R., Vogelzang, M., Deutsch, E. W., Raught, B., et al. (2004). A common open representation of mass spectrometry data and its application to proteomics research. Nature Biotechnology, 22, 1459–1466.CrossRefGoogle Scholar
  47. 47.
    Purohit, P. V., & Rocke, D. M. (2003). Discriminant models for high-throughput proteomics mass spectrometer data. Proteomics, 3, 1699–1703.CrossRefGoogle Scholar
  48. 48.
    R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  49. 49.
    Robb, R. A., Hanson, D. P., Karwoski, R. A., Larson, A. G., Workman, E. L., & Stacy, M. C. (1989). Analyze: A comprehensive, operator-interactive software package for multidimensional medical image display and analysis. Computerized Medical Imaging and Graphics, 13, 433–454.CrossRefGoogle Scholar
  50. 50.
    Ryan, C. G., Clayton, E., Griffin, W. L., Sie, S. H., & Cousens, D. R. (1988). SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 34, 396–402.CrossRefGoogle Scholar
  51. 51.
    Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing, 26, 43–49.CrossRefzbMATHGoogle Scholar
  52. 52.
    Sauve, A. C., & Speed, T. P. (2004). Normalization, baseline correction and alignment of high-throughput mass spectrometry data. In Proceedings of the Data Proceedings Gensips.Google Scholar
  53. 53.
    Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627–1639.CrossRefGoogle Scholar
  54. 54.
    Schramm, T., Hester, A., Klinkert, I., Both, J.-P., Heeren, R. M. A., Brunelle, A., et al. (2012). imzML–a common data format for the flexible exchange and processing of mass spectrometry imaging data. Journal of Proteomics, 75, 5106–5110.CrossRefGoogle Scholar
  55. 55.
    Shin, H., & Markey, M. K. (2006). A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples. Journal of Biomedical Informatics, 39, 227–248.CrossRefGoogle Scholar
  56. 56.
    Sköld, M., Rydén, T., Samuelsson, V., Bratt, C., Ekblad, L., Olsson, H., et al. (2007). Regression analysis and modelling of data acquisition for SELDI-TOF mass spectrometry. Bioinformatics, 23, 1401–1409.CrossRefGoogle Scholar
  57. 57.
    Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.CrossRefGoogle Scholar
  58. 58.
    Smith, R., Ventura, D., & Prince, J. T. (2013). LC-MS alignment in theory and practice: A comprehensive algorithmic review. Briefings in Bioinformatics, 16(1), 104–117.CrossRefGoogle Scholar
  59. 59.
    Strimmer, K. (2014). crossval: Generic functions for cross validation. R package version 1.0.1.Google Scholar
  60. 60.
    Tibshirani, R., Hastie, T., Narsimhan, B., & Chu, G. (2003). Class prediction by nearest shrunken centroids, with applications to DNA microarrays. Statistical Science, 18, 104–117.MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Tibshirani, R., Hastie, T., Narasimhan, B., Soltys, S., Shi, G., Koong, A., et al. (2004). Sample classification from protein mass spectrometry, by ‘peak probability contrasts’. Bioinformatics, 20, 3034–3044.CrossRefGoogle Scholar
  62. 62.
    Toppoo, S., Roveri, A., Vitale, M. P., Zaccarin, M., Serain, E., Apostolidis, E., et al. (2008). MPA: A multiple peak alignment algorithm to perform multiple comparisons of liquid-phase proteomic profiles. Proteomics, 8, 250–253.CrossRefGoogle Scholar
  63. 63.
    Torgrip, R. J. O., Åberg, M., Karlberg, B., & Jacobsson, S. P. (2003). Peak alignment using reduced set mapping. Journal of Chemometrics, 17, 573–582.CrossRefGoogle Scholar
  64. 64.
    Tracy, M. B., Chen, H., Weaver, D. M., Malyarenko, D. I., Sasinowski, M., Cazares, L. H., et al. (2008). Precision enhancement of MALDI-TOF MS using high resolution peak detection and label-free alignment. Proteomics, 8, 1530–1538.CrossRefGoogle Scholar
  65. 65.
    van Herk, M. (1992). A fast algorithm for local minimum and maximum filters on rectangular and octagonal kernels. Pattern Recognition Letters, 13, 517–521.CrossRefGoogle Scholar
  66. 66.
    Veselkov, K. A., Lindon, J. C., Ebbels, T. M. D., Crockford, D., Volynkin, V. V., Holmes, E., et al. (2009). Recursive segment-wise peak alignment of biological (1)h NMR spectra for improved metabolic biomarker recovery. Analytical Chemistry, 81, 56–66.CrossRefGoogle Scholar
  67. 67.
    Wang, B., Fang, A., Heim, J., Bogdanov, B., Pugh, S., Libardoni, M., et al. (2010). DISCO: distance and spectrum correlation optimization alignment for two-dimensional gas chromatography time-of-flight mass spectrometry-based metabolomics. Analytical Chemistry, 82, 5069–5081.CrossRefGoogle Scholar
  68. 68.
    Wehrens, R., Bloemberg, T., & Eilers, P. (2015). Fast parametric time warping of peak lists. Bioinformatics, 15, 3063–3065.CrossRefGoogle Scholar
  69. 69.
    Williams, B., Cornett, S., Dawant, B., Crecelius, A., Bodenheimer, B., & Caprioli, R. (2005). An algorithm for baseline correction of MALDI mass spectra. In Proceedings of the 43rd Annual Southeast Regional Conference (Vol. 1, pp. 137–142). ACM-SE 43.Google Scholar
  70. 70.
    Yasui, Y., McLerran, D., Adam, B., Winget, M., Thornquist, M., & Feng, Z. (2003). An automated peak-identification/calibration procedure for high-dimensional protein measures from mass spectrometers. Journal of Biomedicine and Biotechnology, 4, 242–248.CrossRefGoogle Scholar
  71. 71.
    Yasui, Y., Pepe, M., Thompson, M. L., Adam, B.-L., Wright, G. L., Qu, Y., et al. (2003). A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics, 4, 449–463.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Anesthesiology and Intensive Care MedicineUniversity Hospital Greifswald, Ferdinand-Sauerbruch-StraßeGreifswaldGermany
  2. 2.Epidemiology and BiostatisticsSchool of Public Health, Imperial College LondonNorfolk PlaceUK

Personalised recommendations