Cartilage pp 41-61 | Cite as

Proteoglycan and Collagen Degradation in Osteoarthritis

  • Stephanie J. Gauci
  • Heather Stanton
  • Christopher B. Little
  • Amanda J. FosangEmail author


The gradual loss of articular cartilage from the surface of articulating joints is a feature of osteoarthritis. It is marked by degradation of the cartilage matrix, including the large aggregating proteoglycan aggrecan, the small leucine-rich proteoglycans known as SLRPs and the fibrillar type II collagen. Aggrecan provides the water-holding capacity of cartilage, while the collagen II scaffold provides elastic restraint, aided by a protective coat of small leucine-rich proteoglycans. Damaged aggrecan is readily replaced by synthesis of new aggrecan; however, type II collagen can resist only a limited amount of proteolysis before cartilage function is compromised. In this review the major enzyme families of cartilage-degrading enzymes, the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) families, are discussed. We examine factors that regulate MMP and ADAMTS activity, with a focus on MMP-13, ADAMTS-4 and ADAMTS-5 as the major protagonists of cartilage degradation. We also compare the effects of blocking aggrecanolysis and collagenolysis separately, or together, on cartilage erosion in a mouse model of osteoarthritis. The role of degraded matrix fragments in regulating inflammation in osteoarthritis, via Toll-like receptor signalling, is also discussed.


Cartilage Erosion Aggrecan Degradation Cartilage Function Aggrecanase Activity Hemopexin Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbaszade I, Liu RQ, Yang F, Rosenfeld SA, Ross OH, Link JR, Ellis DM, Tortorella MD, Pratta MA, Hollis JM, Wynn R, Duke JL, George HJ, Hillman MC Jr, Murphy K, Wiswall BH, Copeland RA, Decicco CP, Bruckner R, Nagase H, Itoh Y, Newton RC, Magolda RL, Trzaskos JM, Hollis GF, Arner EC, Burn TC (1999) Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J Biol Chem 274(33):23443–23450CrossRefPubMedGoogle Scholar
  2. Akhtar N, Rasheed Z, Ramamurthy S, Anbazhagan AN, Voss FR, Haqqi TM (2010) MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum 62(5):1361–1371Google Scholar
  3. Alqurqini A, Garguilo S, D’Souza G, Zhang LX, Schmidt TA, Jay GD, Elsai KA (2015) The interaction of lubricin/proteoglycan 4 (PRG4) with toll-like receptors 2 and 4: an anti-inflammatory role for PRG4 in synovial fluid. Arthritis Res Ther 17:353CrossRefGoogle Scholar
  4. Aspberg A (2016) Cartilage proteoglycans. In: Grässel S, Aszódi A (eds) Cartilage: volume 1: physiology and development. Springer International Publishing, Cham, pp 1–22Google Scholar
  5. Barreto G, Soininen A, Ylinen P, Sandelin J, Konttinen YT, Nordstrom DC, Eklund KK (2015) Soluble biglycan: a potential mediator of cartilage degradation in osteoarthritis. Arthritis Res Ther 17(1):379CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bateman JF, Lamande SR, Ramshaw JAM (1996) Collagen superfamily. In: Comper WD (ed) Extracellular matrix, vol 2, Molecular components adn interactions. Harwood Academic Publishers, The Netherlands, pp 22–67Google Scholar
  7. Bau B, Gebhard PM, Haag J, Knorr T, Bartnik E, Aigner T (2002) Relative messenger RNA expression profiling of collagenases and aggrecanases in human articular chondrocytes in vivo and in vitro. Arthritis Rheum 46(10):2648–2657CrossRefPubMedGoogle Scholar
  8. Beekman B, Verzijl N, de Roos JA, TeKoppele JM (1998) Matrix degradation by chondrocytes cultured in alginate: IL-1 beta induces proteoglycan degradation and proMMP synthesis but does not result in collagen degradation. Osteoarthr Cartil 6(5):330–340CrossRefPubMedGoogle Scholar
  9. Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, Mitchell P, Hambor J, Diekmann O, Tschesche H, Chen J, Van Wart H, Poole AR (1997) Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 99(7):1534–1545CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chevalier X, Groult N, Larget-Piet B, Zardi L, Hornebeck W (1994) Tenascin distribution in articular cartilage from normal subjects and from patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 37(7):1013–1022CrossRefPubMedGoogle Scholar
  11. Chung L, Dinakarpandian D, Yoshida N, Lauer-Fields JL, Fields GB, Visse R, Nagase H (2004) Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. Embo J 23(15):3020–3030CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cs-Szabo G, Melching LI, Roughley PJ, Glant TT (1997) Changes in messenger RNA and protein levels of proteoglycans and link protein in human osteoarthritic cartilage samples. Arthritis Rheum 40(6):1037–1045Google Scholar
  13. Dahlberg L, Billinghurst RC, Manner P, Nelson F, Webb G, Ionescu M, Reiner A, Tanzer M, Zukor D, Chen J, Van Wart HE, Poole AR (2000) Selective enhancement of collagenase-mediated cleavage of resident type II collagen in cultured osteoarthritic cartilage and arrest with a synthetic inhibitor that spares collagenase 1 (matrix metalloproteinase 1). Arthritis Rheum 43(3):673–682CrossRefPubMedGoogle Scholar
  14. Davidson RK, Waters JG, Kevorkian L, Darrah C, Cooper A, Donell ST, Clark IM (2006) Expression profiling of metalloproteinases and their inhibitors in synovium and cartilage. Arthritis Res Ther 8(4):R124CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dejica VM, Mort JS, Laverty S, Percival MD, Antoniou J, Zukor DJ, Poole AR (2008) Cleavage of type II collagen by cathepsin K in human osteoarthritic cartilage. Am J Pathol 173(1):161–169CrossRefPubMedPubMedCentralGoogle Scholar
  16. Engel CK, Pirard B, Schimanski S, Kirsch R, Habermann J, Klingler O, Schlotte V, Weithmann KU, Wendt KU (2005) Structural basis for the highly selective inhibition of MMP-13. Chem Biol 12(2):181–189Google Scholar
  17. Fields GB (2015) New strategies for targeting matrix metalloproteinases. Matrix Biol 44–46:239–246Google Scholar
  18. Fischer T, Riedl R (2016) Molecular recognition of the catalytic zinc (II) Ion in MMP-13: structure-based evolution of an allosteric inhibitor to dual binding mode inhibitors with improved lipophilic ligand efficiencies. Int J Mol Sci 17(3):314Google Scholar
  19. Flannery CR, Zeng W, Corcoran C, Collins-Racie LA, Chockalingam PS, Hebert T, Mackie SA, McDonagh T, Crawford TK, Tomkinson KN, LaVallie ER, Morris EA (2002) Autocatalytic cleavage of ADAMTS-4 (aggrecanase-1) reveals multiple glycosaminoglycan-binding sites. J Biol Chem 277(45):42775–42780CrossRefPubMedGoogle Scholar
  20. Fosang AJ, Beier F (2011) Emerging frontiers in cartilage and chondrocyte biology. Best Pract Res Clin Rheumatol 25(6):751–766CrossRefPubMedGoogle Scholar
  21. Fosang AJ, Rogerson FM (2010) Identifying the human aggrecanase. Osteoarthr Cartil 18(9):1109–1116CrossRefPubMedGoogle Scholar
  22. Fosang AJ, Rogerson FM, East CJ, Stanton H (2008) ADAMTS-5: the story so far. Eur Cell Mater 15:11–26CrossRefPubMedGoogle Scholar
  23. Fushimi K, Troeberg L, Nakamura H, Lim NH, Nagase H (2008) Functional differences of the catalytic and non-catalytic domains in human ADAMTS-4 and ADAMTS-5 in aggrecanolytic activity. J Biol Chem 283:6706–6716CrossRefPubMedGoogle Scholar
  24. Gao G, Plaas A, Thompson VP, Jin S, Zuo F, Sandy JD (2004) ADAMTS4 (aggrecanase-1) activation on the cell surface involves C-terminal cleavage by glycosylphosphatidyl inositol-anchored membrane type 4-matrix metalloproteinase and binding of the activated proteinase to chondroitin sulfate and heparan sulfate on syndecan-1. J Biol Chem 279(11):10042–10051CrossRefPubMedGoogle Scholar
  25. Gao DA, Xiong Z, Heim-Riether A, Amodeo L, August EM, Cao X, Ciccarelli L, Collins BK, Harrington K, Haverty K, Hill-Drzewi M, Li X, Liang S, Margarit SM, Moss N, Nagaraja N, Proudfoot J, Roman R, Schlyer S, Keenan LS, Taylor S, Wellenzohn B, Wiedenmayer D, Li J, Farrow NA (2010) SAR studies of non-zinc-chelating MMP-13 inhibitors: improving selectivity and metabolic stability. Bioorg Med Chem Lett 20(17):5039–5043Google Scholar
  26. Gege C, Bao B, Bluhm H, Boer J, Gallagher BM, Korniski B, Powers TS, Steeneck C, Taveras AG, Baragi VM (2012) Discovery and evaluation of a non-Zn chelating, selective matrix metalloproteinase 13 (MMP-13) inhibitor for potential intra-articular treatment of osteoarthritis. J Med Chem 55(2):709–716Google Scholar
  27. Gendron C, Kashiwagi M, Lim NH, Enghild JJ, Thogersen IB, Hughes C, Caterson B, Nagase H (2007) Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4. J Biol Chem 282(25):18294–18306CrossRefPubMedGoogle Scholar
  28. Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma HL, Flannery CR, Peluso D, Kanki K, Yang Z, Majumdar MK, Morris EA (2005) Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434(7033):644–648CrossRefPubMedGoogle Scholar
  29. Goldring MB, Otero M (2011) Inflammation in osteoarthritis. Curr Opin Rheumatol 23:471–478CrossRefPubMedPubMedCentralGoogle Scholar
  30. Goldring MB, Otero M, Plumb DA, Dragomir C, Favero M, El Hachem K, Hashimoto K, Roach HI, Olivotto E, Borzi RM, Marcu KB (2011) Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur Cell Mater 21:202–220CrossRefPubMedPubMedCentralGoogle Scholar
  31. Grässel S (2016) Collagens in hyaline cartilage. In: Grässel S, Aszódi A (eds) Cartilage: volume 1: physiology and development. Springer International Publishing, Cham, pp 23–53Google Scholar
  32. Hasty KA, Wu H, Byrne M, Goldring MB, Seyer JM, Jaenisch R, Krane SM, Mainardi CL (1993) Susceptibility of type I collagen containing mutated a1(1) chains to cleavage by human neutrophil collagenase. Matrix 13:181–186CrossRefPubMedGoogle Scholar
  33. Heathfield TF, Onnerfjord P, Dahlberg L, Heinegard D (2004) Cleavage of fibromodulin in cartilage explants involves removal of the N-terminal tyrosine sulfate-rich region by proteolysis at a site that is sensitive to matrix metalloproteinase-13. J Biol Chem 279(8):6286–6295CrossRefPubMedGoogle Scholar
  34. Ilic MZ, Robinson HC, Handley CJ (1998) Characterization of aggrecan retained and lost from the extracellular matrix of articular cartilage. Involvement of carboxyl-terminal processing in the catabolism of aggrecan. J Biol Chem 273(28):17451–17458CrossRefPubMedGoogle Scholar
  35. Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release. Biochem J 322:809–814CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jacobsen JA, Major Jourden JL, Miller MT, Cohen SM (2010) To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. Biochim Biophys Acta 1803(1):72–94Google Scholar
  37. Ji Q, Xu X, Zhang Q, Kang L, Xu Y, Zhang K, Li L, Liang Y, Hong T, Ye Q, Wang Y (2016) The IL-1beta/AP-1/miR-30a/ADAMTS-5 axis regulates cartilage matrix degradation in human osteoarthritis. J Mol Med (Berl)Google Scholar
  38. Jungel A, Ospelt C, Lesch M, Thiel M, Sunyer T, Schorr O, Michel BA, Gay RE, Kolling C, Flory C, Gay S, Neidhart M (2010) Effect of the oral application of a highly selective MMP-13 inhibitor in three different animal models of rheumatoid arthritis. Ann Rheum Dis 69(5):898–902Google Scholar
  39. Kafienah W, Bromme D, Buttle DJ, Croucher LJ, Hollander AP (1998) Human cathepsin K cleaves native type I and II collagens at the N-terminal end of the triple helix. Biochem J 331(Pt 3):727–732CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kashiwagi M, Enghild JJ, Gendron C, Hughes C, Caterson B, Itoh Y, Nagase H (2004) Altered proteolytic activities of ADAMTS-4 expressed by C-terminal processing. J Biol Chem 279(11):10109–10119CrossRefPubMedGoogle Scholar
  41. Kevorkian L, Young DA, Darrah C, Donell ST, Shepstone L, Porter S, Brockbank SM, Edwards DR, Parker AE, Clark IM (2004) Expression profiling of metalloproteinases and their inhibitors in cartilage. Arthritis Rheum 50(1):131–141CrossRefPubMedGoogle Scholar
  42. Knäuper V, Lopez-Otin C, Smith B, Knight G, Murphy G (1996) Biochemical characterization of human collagenase-3. J Biol Chem 271:1544–1550CrossRefPubMedGoogle Scholar
  43. Knäuper V, Cowell S, Smitj B, Lopez-Otin C, O’Shea M, Morris H, Zardi L, Murphy G (1997) The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J Biol Chem 272:7608–7616CrossRefPubMedGoogle Scholar
  44. Kobayashi M, Squires GR, Mousa A, Tanzer M, Zukor DJ, Antoniou J, Feige U, Poole AR (2005) Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum 52(1):128–135Google Scholar
  45. Kosasih HJ, Last K, Rogerson FM, Golub SB, Gauci SJ, Russo VC, Stanton H, Wilson R, Lamande SR, Holden P, Fosang AJ (2016) A disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5) forms catalytically active oligomers. J Biol Chem 291(7):3197–3208CrossRefPubMedGoogle Scholar
  46. Kostopoulou F, Malizos KN, Papathanasiou I, Tsezou A (2015) MicroRNA-33a regulates cholesterol synthesis and cholesterol efflux-related genes in osteoarthritic chondrocytes. Arthritis Res Ther 17:42Google Scholar
  47. Kozaci LD, Buttle DJ, Hollander AP (1997) Degradation of type II collagen, but not proteoglycan correlates with matrix metalloproteinase activity in cartilage explant cultures. Arthritis Rheum 40:164–174CrossRefPubMedGoogle Scholar
  48. Larkin J, Lohr TA, Elefante L, Shearin J, Matico R, Su JL, Xue Y, Liu F, Genell C, Miller RE, Tran PB, Malfait AM, Maier CC, Matheny CJ (2015) Translational development of an ADAMTS-5 antibody for osteoarthritis disease modification. Osteoarthr Cartil 23:1254–1266CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lees SJ, Golub SB, Last K, Zeng W, Jackson DC, Sutton P, Fosang AJ (2015) Bioactivity in an aggrecan 32mer fragment is mediated via toll-like receptor 2. Arthritis Rheum 67(5):1240–1249CrossRefGoogle Scholar
  50. Li X, Gibson G, Kim JS, Kroin J, Xu S, van Wijnen AJ, Im HJ (2011) MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis. Gene 480(1–2):34–41CrossRefPubMedPubMedCentralGoogle Scholar
  51. Little CB, Hughes CE, Curtis CL, Janusz MJ, Bohne R, Wang-Weigand S, Taiwo YO, Mitchell PG, Otterness IG, Flannery CR, Caterson B (2002) Matrix metalloproteinases are involved in C-terminal and interglobular domain processing of cartilage aggrecan in late stage cartilage degradation. Matrix Biol 21(3):271–288CrossRefPubMedGoogle Scholar
  52. Little CB, Meeker CT, Golub SB, Lawlor KE, Farmer PJ, Smith SM, Fosang AJ (2007) Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair. J Clin Invest 117(6):1627–1636CrossRefPubMedPubMedCentralGoogle Scholar
  53. Little CB, Barai A, Burkhardt D, Smith SM, Fosang AJ, Werb Z, Shah M, Thompson EW (2009) Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum 60(12):3723–3733CrossRefPubMedPubMedCentralGoogle Scholar
  54. Liu X, Wu H, Byrne M, Jeffrey J, Krane S, Jaenisch R (1995) A targeted mutation at the known collagenase cleavage site in mouse type I collagen impairs tissue remodeling. J Cell Biol 130(1):227–237CrossRefPubMedGoogle Scholar
  55. Liu-Bryan R, Terkeltaub R (2010) Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous Toll-like receptor 2/Toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. Arthritis Rheum 62(7):2004–2012PubMedPubMedCentralGoogle Scholar
  56. Lohmander LS, Neame PJ, Sandy JD (1993) The structure of aggrecan fragments in human synovial fluid: evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis Rheum 36:1214–1222CrossRefPubMedGoogle Scholar
  57. Malfait AM, Arner EC, Song RH, Alston JT, Markosyan S, Staten N, Yang Z, Griggs DW, Tortorella MD (2008) Proprotein convertase activation of aggrecanases in cartilage in situ. Arch Biochem Biophys 478(1):43–51CrossRefPubMedGoogle Scholar
  58. Manka SW, Carafoli F, Visse R, Bihan D, Raynal N, Farndale RW, Murphy G, Enghild JJ, Hohenester E, Nagase H (2012) Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. Proc Natl Acad Sci U S A 109(31):12461–12466CrossRefPubMedPubMedCentralGoogle Scholar
  59. Maroudas AI (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260(5554):808–809CrossRefPubMedGoogle Scholar
  60. Matsukawa T, Sakai T, Yonezawa T, Hiraiwa H, Hamada T, Nakashima M, Ono Y, Ishizuka S, Nakahara H, Lotz MK, Asahara H, Ishiguro N (2013) MicroRNA-125b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes. Arthritis Res Ther 15(1):R28Google Scholar
  61. Mazzuca SA, Brandt KD, Eyre DR, Katz BP, Askew J, Lane KA (2006) Urinary levels of type II collagen C-telopeptide crosslink are unrelated to joint space narrowing in patients with knee osteoarthritis. Ann Rheum Dis 65(8):1055–1059CrossRefPubMedGoogle Scholar
  62. Melching LI, Fisher WD, Lee ER, Mort JS, Roughley PJ (2006) The cleavage of biglycan by aggrecanases. Osteoarthr Cartil 14(11):1147–1154CrossRefPubMedGoogle Scholar
  63. Melrose J, Fuller ES, Roughley PJ, Smith MM, Kerr B, Hughes CE, Caterson B, Little CB (2008) Fragmentation of decorin, biglycan, lumican and keratocan is elevated in degenerate human meniscus, knee and hip articular cartilages compared with age-matched macroscopically normal and control tissues. Arthritis Res Ther 10(4):R79CrossRefPubMedPubMedCentralGoogle Scholar
  64. Metsaranta M, Toman D, De Crombrugghe B, Vuorio E (1991) Mouse type II collagen gene. Complete nucleotide sequence, exon structure, and alternative splicing. J Biol Chem 266(25):16862–16869PubMedGoogle Scholar
  65. Midwood K, Sacre S, Piccinini AM, Inglis J, Trebaul A, Chan E, Drexler S, Sofat N, Kashiwagi M, Orend G, Brennan F, Foxwell B (2009) Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med 15(7):774–780CrossRefPubMedGoogle Scholar
  66. Miller EJ, Harris ED, Chung E, Finch JE, McCroskery PA, Butler WT (1976) Cleavage of type II and III collagens with mammalian collagenase: site of cleavage and primary structure at the NH2-terminal portion of the smaller fragment released from both collagens. Biochemistry 15(4):787–792CrossRefPubMedGoogle Scholar
  67. Mitchell PG, Magna HA, Reeves LM, Lopresti-Morrow LL, Yocum SA, Rosner PJ, Geoghegan KF, Hambor JE (1996) Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest 97:761–768CrossRefPubMedPubMedCentralGoogle Scholar
  68. Miyaki S, Nakasa T, Otsuki S, Grogan SP, Higashiyama R, Inoue A, Kato Y, Sato T, Lotz MK, Asahara H (2009) MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum 60(9):2723–2730CrossRefPubMedPubMedCentralGoogle Scholar
  69. Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, Kato Y, Takemoto F, Nakasa T, Yamashita S, Takada S, Lotz MK, Ueno-Kudo H, Asahara H (2010) MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 24(11):1173–1185Google Scholar
  70. Monfort J, Tardif G, Reboul P, Mineau F, Roughley P, Pelletier JP, Martel-Pelletier J (2006) Degradation of small leucine-rich repeat proteoglycans by matrix metalloprotease-13: identification of a new biglycan cleavage site. Arthritis Res Ther 8(1):R26CrossRefPubMedPubMedCentralGoogle Scholar
  71. Moreth K, Brodbeck R, Babelova A, Gretz N, Spieker T, Zeng-Brouwers J, Pfeilschifter J, Young MF, Schaefer RM, Schaefer L (2010) The proteoglycan biglycan regulates expression of the B cell chemoattractant CXCL13 and aggravates murine lupus nephritis. J Clin Invest 120(12):4251–4272CrossRefPubMedPubMedCentralGoogle Scholar
  72. Murphy G, Stanton H, Cowell S, Butler G, Knauper V, Atkinson S, Gavrilovic J (1999) Mechanisms for pro matrix metalloproteinase activation. Apmis 107(1):38–44CrossRefPubMedGoogle Scholar
  73. Nara H, Sato K, Naito T, Mototani H, Oki H, Yamamoto Y, Kuno H, Santou T, Kanzaki N, Terauchi J, Uchikawa O, Kori M (2014) Discovery of novel, highly potent, and selective quinazoline-2-carboxamide-based matrix metalloproteinase (MMP)-13 inhibitors without a zinc binding group using a structure-based design approach. J Med Chem 57(21):8886–8902Google Scholar
  74. Nastase MV, Young MF, Schaefer L (2012) Biglycan: a multivalent proteoglycan providing structure and signals. J Histochem Cytochem 60(12):963–975Google Scholar
  75. Nemirovskiy OV, Dufield DR, Sunyer T, Aggarwal P, Welsch DJ, Mathews WR (2007) Discovery and development of a type II collagen neoepitope (TIINE) biomarker for matrix metalloproteinase activity: from in vitro to in vivo. Anal Biochem 361(1):93–101CrossRefPubMedGoogle Scholar
  76. Neuhold LA, Killar L, Zhao W, Sung ML, Warner L, Kulik J, Turner J, Wu W, Billinghurst C, Meijers T, Poole AR, Babij P, DeGennaro LJ (2001) Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J Clin Invest 107(1):35–44CrossRefPubMedPubMedCentralGoogle Scholar
  77. Ni GX, Li Z, Zhou YZ (2014) The role of small leucine-rich proteoglycans in osteoarthritis pathogenesis. Osteoarthr Cartil 22(7):896–903CrossRefPubMedGoogle Scholar
  78. Nugent M (2016) MicroRNAs: exploring new horizons in osteoarthritis. Osteoarthr Cartil 24(4):573–580Google Scholar
  79. O’Neill LA (2006) How toll-like receptors signal: what we know and what we don’t know. Curr Opin Immunol 18(1):3–9Google Scholar
  80. Park SJ, Cheon EJ, Lee MH, Kim HA (2013) MicroRNA-127-5p regulates matrix metalloproteinase 13 expression and interleukin-1beta-induced catabolic effects in human chondrocytes. Arthritis Rheum 65(12):3141–3152Google Scholar
  81. Patterson ML, Atkinson SJ, Knauper V, Murphy G (2001) Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain. FEBS Lett 503(2–3):158–162CrossRefPubMedGoogle Scholar
  82. Pratta MA, Yao W, Decicco C, Tortorella MD, Liu RQ, Copeland RA, Magolda R, Newton RC, Trzaskos JM, Arner EC (2003) Aggrecan protects cartilage collagen from proteolytic cleavage. J Biol Chem 30:30Google Scholar
  83. Rees SG, Dent CM, Caterson B (2009a) Metabolism of proteoglycans in tendon. Scand J Med Sci Sports 19(4):470–478Google Scholar
  84. Rees SG, Waggett AD, Kerr BC, Probert J, Gealy EC, Dent CM, Caterson B, Hughes CE (2009b) Immunolocalisation and expression of keratocan in tendon. Osteoarthr Cartil 17(2):276–279CrossRefPubMedGoogle Scholar
  85. Ruminski PG, Massa M, Strohbach J, Hanau CE, Schmidt M, Scholten JA, Fletcher TR, Hamper BC, Carroll JN, Shieh HS, Caspers N, Collins B, Grapperhaus M, Palmquist KE, Collins J, Baldus JE, Hitchcock J, Kleine HP, Rogers MD, McDonald J, Munie GE, Messing DM, Portolan S, Whiteley LO, Sunyer T, Schnute ME (2016) Discovery of N-(4-fluoro-3-methoxybenzyl)-6-(2-(((2S,5R)-5-(hydroxymethyl)-1,4-dioxan-2-yl) met hyl)-2H-tetrazol-5-yl)-2-methylpyrimidine-4-carboxamide. A highly selective and orally bioavailable matrix metalloproteinase-13 inhibitor for the potential treatment of osteoarthritis. J Med Chem 59(1):313–327Google Scholar
  86. Sandy JD, Flannery CR, Neame PJ, Lohmander LS (1992) The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373 - Ala 374 bond of the interglobular domain. J Clin Invest 89:1512–1516CrossRefPubMedPubMedCentralGoogle Scholar
  87. Santamaria S, Yamamoto K, Botkjaer K, Tape C, Dyson MR, McCafferty J, Murphy G, Nagase H (2015) Antibody-based exosite inhibitors of ADAMTS-5 (aggrecanase-2). Biochem J 471(3):391–401CrossRefPubMedPubMedCentralGoogle Scholar
  88. Schaefer L (2014) Complexity of danger: the diverse nature of damagae-associated molecular patterns. J Biol Chem 289:35237–35245CrossRefPubMedPubMedCentralGoogle Scholar
  89. Schaefer L, Babelova A, Kiss E, Hausser HJ, Baliova M, Krzyzankova M, Marsche G, Young MF, Mihalik D, Gotte M, Malle E, Schaefer RM, Grone HJ (2005) The matrix component biglycan is proinflammatory and signals through toll-like receptors 4 and 2 in macrophages. J Clin Invest 115(8):2223–2233CrossRefPubMedPubMedCentralGoogle Scholar
  90. Stanton H, Rogerson FM, East CJ, Golub SB, Lawlor KE, Meeker CT, Little CB, Last K, Farmer PJ, Campbell IK, Fourie AM, Fosang AJ (2005) ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434(7033):648–652CrossRefPubMedGoogle Scholar
  91. Stoop R, van der Kraan PM, Buma P, Hollander AP, Poole AR, Van Den Berg WB (1999) Denaturation of type II collagen in articular cartilage in experimental murine arthritis. Evidence for collagen degradation in both reversible and irreversible cartilage damage. J Pathol 188(3):329–337CrossRefPubMedGoogle Scholar
  92. Struglics A, Hansson M (2010) Calpain is involved in C-terminal truncation of human aggrecan. Biochem J 430(3):531–538CrossRefPubMedGoogle Scholar
  93. Struglics A, Lohmander LS, Last K, Akikusa J, Allen R, Fosang AJ (2012) Aggrecanase cleavage in juvenile idiopathic arthritis patients is minimally detected in the aggrecan interglobular domain but robust at the aggrecan C-terminus. Arthritis Rheum 64(12):4151–4161CrossRefPubMedGoogle Scholar
  94. Stura EA, Visse R, Cuniasse P, Dive V, Nagase H (2013) Crystal structure of full-length human collagenase 3 (MMP-13) with peptides in the active site defines exosites in the catalytic domain. FASEB J 27(11):4395–4405Google Scholar
  95. Su SL, Tsai CD, Lee CH, Salter DM, Lee HS (2005) Expression and regulation of toll-like receptor 2 by IL-1beta and fibronectin fragments in human articular chondrocytes. Osteoarthr Cartil 13(10):879–886CrossRefPubMedGoogle Scholar
  96. Sztrolovics R, White RJ, Poole AR, Mort JS, Roughley PJ (1999) Resistance of small leucine-rich repeat proteoglycans to proteolytic degradation during interleukin-1-stimulated cartilage catabolism. Biochem J 339(Pt:3):3–577Google Scholar
  97. Thomas L (1956) Reversible collapse of rabbit ears after intravenous papain, and prevention of recovery by cortisone. J Exp Med 104:245–261CrossRefPubMedPubMedCentralGoogle Scholar
  98. Tortorella MD, Burn TC, Pratta MA, Abbaszade I, Hollis JM, Liu R, Rosenfeld SA, Copeland RA, Decicco CP, Wynn R, Rockwell A, Yang F, Duke JL, Solomon K, George H, Bruckner R, Nagase H, Itoh Y, Ellis DM, Ross H, Wiswall BH, Murphy K, Hillman MC Jr, Hollis GF, Newton RC, Magolda RL, Trzaskos JM, Arner EC (1999) Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 284(5420):1664–1666CrossRefPubMedGoogle Scholar
  99. Tortorella MD, Pratta M, Liu RQ, Austin J, Ross OH, Abbaszade I, Burn T, Arner E (2000) Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4). J Biol Chem 275(24):18566–18573CrossRefPubMedGoogle Scholar
  100. Troeberg L, Nagase H (2012) Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta 1824(1):133–145Google Scholar
  101. Troeberg L, Lazenbatt C, Anower EKMF, Freeman C, Federov O, Habuchi H, Habuchi O, Kimata K, Nagase H (2014) Sulfated glycosaminoglycans control the extracellular trafficking and the activity of the metalloprotease inhibitor TIMP-3. Chem Biol 21(10):1300–1309Google Scholar
  102. Tsezou A (2014) Osteoarthritis year in review 2014: genetics and genomics. Osteoarthr Cartil 22(12):2017–2024Google Scholar
  103. Verzijl N, DeGroot J, Thorpe SR, Bank RA, Shaw JN, Lyons TJ, Bijlsma JW, Lafeber FP, Baynes JW, TeKoppele JM (2000) Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 275(50):39027–39031Google Scholar
  104. Verzijl N, DeGroot J, Bank RA, Bayliss MT, Bijlsma JW, Lafeber FP, Maroudas A, TeKoppele JM (2001) Age-related accumulation of the advanced glycation endproduct pentosidine in human articular cartilage aggrecan: the use of pentosidine levels as a quantitative measure of protein turnover. Matrix Biol 20(7):409–417CrossRefPubMedGoogle Scholar
  105. Vonk LA, Kragten AH, Dhert WJ, Saris DB, Creemers LB (2014) Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes. Osteoarthr Cartil 22(1):145–153Google Scholar
  106. Wainwright SD, Bondeson J, Caterson B, Hughes CE (2013) ADAMTS-4_v1 is a splice variant of ADAMTS-4 that is expressed as a protein in human synovium and cleaves aggrecan at the interglobular domain. Arthritis Rheum 65(11):2866–2875CrossRefPubMedPubMedCentralGoogle Scholar
  107. Wu H, Byrne MH, Stacey A, Goldring MB, Birkhead JR, Jaenisch R, Krane SM (1990) Generation of collagenase-resistant collagen by site-directed mutagenesis of murine pro alpha 1(I) collagen gene. Proc Natl Acad Sci U S A 87(15):5888–5892CrossRefPubMedPubMedCentralGoogle Scholar
  108. Yamamoto K, Okano H, Miyagawa W, Visse R, Shitomi Y, Santamaria S, Dudhia J, Troeberg L, Strickland DK, Hirohata S, Nagase H (2016) MMP-13 is constitutively produced in human chondrocytes and co-endocytosed with ADAMTS-5 and TIMP-3 by the endocytic receptor LRP1. Matrix BiolGoogle Scholar
  109. Zeng W, Corcoran C, Collins-Racie LA, Lavallie ER, Morris EA, Flannery CR (2006) Glycosaminoglycan-binding properties and aggrecanase activities of truncated ADAMTSs: Comparative analyses with ADAMTS-5, -9, -16 and -18. Biochim Biophys Acta 1760(3):517–524CrossRefPubMedGoogle Scholar
  110. Zhang Q, Hui W, Litherland GJ, Barter MJ, Davidson R, Darrah C, Donell ST, Clark IM, Cawston TE, Robinson JH, Rowan AD, Young DA (2008) Differential Toll-like receptor-dependent collagenase expression in chondrocytes. Ann Rheum Dis 67(11):1633–1641Google Scholar
  111. Zhao W, Byrne MH, Boyce BF, Krane SM (1999) Bone resorption induced by parathyroid hormone is strikingly diminished in collagenase-resistant mutant mice. J Clin Invest 103(4):517–524CrossRefPubMedPubMedCentralGoogle Scholar
  112. Zhen EY, Brittain IJ, Laska DA, Mitchell PG, Sumer EU, Karsdal MA, Duffin KL (2008) Characterization of metalloprotease cleavage products of human articular cartilage. Arthritis Rheum 58(8):2420–2431CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Stephanie J. Gauci
    • 1
  • Heather Stanton
    • 1
  • Christopher B. Little
    • 2
  • Amanda J. Fosang
    • 1
    Email author
  1. 1.University of Melbourne Department of Paediatrics and Murdoch Childrens Research InstituteRoyal Children’s HospitalParkvilleAustralia
  2. 2.Raymond Purves Bone and Joint Research Laboratories, Kolling Institute, Institute of Bone and Joint Research, Sydney Medical School NorthernUniversity of SydneySt. LeonardsAustralia

Personalised recommendations