Advertisement

Safety of Manufacturing Equipment: Methodology Based on a Work Situation Model and Need Functional Analysis

  • Mahenina Remiel FENO
  • Patrick MARTINEmail author
  • Bruno DAILLE-LEFEVRE
  • Alain ETIENNE
  • Jacques MARSOT
  • Ali SIADAT
Chapter
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The aim of “integrated prevention” is to conduct a preliminary risk analysis in order to achieve a lower level of risk in the design of future work equipment. Despite the many safety documents that exist, many companies, particularly SME/SMIs, do not yet apply these safe design principles. Integration of safety in the design process is mainly based on the individual knowledge or experience of the designers and is not conducted in any formalized way. In order to answer to this problem, this paper presents a methodology to involve engaging stakeholders in dynamic dialogue and a framework so that they may together define the information necessary for implementing safe design principles during the functional specification. The proposed methodology has been validated to industrial case.

Keywords

work situation integrated prevention requirement specification need functional analysis safe design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    NF EN ISO 12100: Safety of machinery —General principles for design —Risk assessment and risk reduction, CEN, Bruxelles, 2010Google Scholar
  2. 2.
    Fadier E., De La Garza C. (2006) - Safety design: Towards a new philosophy. Safety Science, 44, Issue 1, 2006, pp. 55-73Google Scholar
  3. 3.
    Directive 2006/42/CE, the European parliament and of the council of 9 June 2006 on the approximation of the laws of the member states relating to machinery, Official Journal Law, L157-24 to L157-86., 2006Google Scholar
  4. 4.
    Prudhomme G., Zwolinski P., Brissaud D. Integrating into the design process the needs of those involved in the product life-cycle Journal of Engineering Design, vol. 14-3, 2003, pp. 333-353.Google Scholar
  5. 5.
    Sagot J.C., Gouin V., Gomes S. Ergonomics in product design: safety factor. Safety Science, 41, 2003, pp. 137-154.Google Scholar
  6. 6.
    Ghemraoui R., Mathieu L, Tricot N. Design method for systematic safety integration, CIRP Annals - Manufacturing Technology 58, 2009, pp.161-164Google Scholar
  7. 7.
    Moraes A.S.P., Arezes P. M., Vasconcelos R., From ergonomics to design specifications: contributions to the design of a processing machine in a tire company, IEA 2012: 18th World congress on Ergonomics - Designing a sustainable future, IOS Press 2012, pp. 552-559Google Scholar
  8. 8.
    Darses F., Wolff M., How do designers represent to themselves the users’ needs?, Applied Ergonomics 37(6), 2006, pp. 757-764.Google Scholar
  9. 9.
    EN 1325-1 Value management, value analysis, functional analysis vocabulary. Value analysis and functional analysis, CEN, Bruxelles, 1997.Google Scholar
  10. 10.
    Marsot J., Claudon L. Design and Ergonomics - Methods and Tools for integrating ergonomics at the design stage of hand tools. International Journal of Occupational Safety and Ergonomics, 10(1), 2004, pp.11-21.Google Scholar
  11. 11.
    Fadier E., Neboit M. Essai d’intégration de l’analyse ergonomique de l’activité dans l’analyse de la fiabilité opérationnelle pour la conception: approche méthodologique. Actes du colloque «Recherche et Ergonomie», Toulouse, 1998, pp. 61-66.Google Scholar
  12. 12.
    Hasan R., Bernard A., Ciccotelli J., Martin P., Integrating safety into the design process: elements and concepts relative to the working situation. Safety Science - Special issue « Safety in design », 41(2-3), 2003, pp. 155-180.Google Scholar
  13. 13.
    Guillevic C., Psychologie du travail, Éditions Nathan, collection Fac Psychologie, Paris, 1991,225 p.Google Scholar
  14. 14.
    Otto K., Wood, K., Product Design: Techniques in Reverse Engineering and New Product Development, Prentice Hall, Upper Saddle River, NJ 07458, 2001Google Scholar
  15. 15.
    Tapan K. Bose, (2010) - Total Quality of Management. Chapter 10. Basic Decision-making and Problem-solving Tools. Pearson Education India. ISBN: 978-8-131-70022-8.Google Scholar
  16. 16.
    Falconnet – Dequaire E., Meleton L. (2001) - IDAR®: une méthode d’analyse des risques dans le cadre de la directive Machines, CETIM, Senlis, 2001, 164 p.Google Scholar
  17. 17.
    Boujut JF, Blanco E. Intermediary Objects as a Means to Foster Co-operation in Engineering Design. Journal of computer supported collaborative; 2002. 12 (2):205-219.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mahenina Remiel FENO
    • 1
  • Patrick MARTIN
    • 2
    Email author
  • Bruno DAILLE-LEFEVRE
    • 3
  • Alain ETIENNE
    • 2
  • Jacques MARSOT
    • 3
  • Ali SIADAT
    • 2
  1. 1.Arts et Métiers (ENSAM) Aix en Provence campus, LSISAix-en-ProvenceFrance
  2. 2.Arts et Métiers (ENSAM) Metz campus, LCFCMetzFrance
  3. 3.Work Equipment Engineering DepartmentInstitut national de recherche et de sécurité (INRS)Vandœuvre-Lès-Nancy cedexFrance

Personalised recommendations