Ontology Alignment Using Web Linked Ontologies as Background Knowledge

  • Thomas Hecht
  • Patrice Buche
  • Juliette Dibie
  • Liliana Ibanescu
  • Cassia Trojahn dos Santos
Part of the Studies in Computational Intelligence book series (SCI, volume 665)


This paper proposes an ontology matching method for aligning a source ontology with target ontologies already published and linked on the Linked Open Data (LOD) cloud. This method relies on the refinement of a set of input alignments generated by existing ontology matching methods. Since the ontologies to be aligned can be expressed in several representation languages with different levels of expressiveness and the existing ontology matching methods can only be applied to some representation languages, the first step of our method consists in applying existing matching methods to as many ontology variants as possible. We then propose to apply two main strategies to refine the initial alignment set: the removal of different kinds of ambiguities between correspondences and the use of the links published on the LOD. We illustrate our proposal in the field of life sciences and environment.


  1. Aguirre, J., et al. (2012). Results of the ontology alignment evaluation initiative 2012. In Proceedings of 7th ISWC Workshop on Ontology Matching (OM) (p. 73115).Google Scholar
  2. Bernstein, P. A., Madhavan, J., & Rahm, E. (2011). Generic schema matching, ten years later. PVLDB, 4(11), 695–701.Google Scholar
  3. Bizer, C. (2013). Interlinking scientific data on a global scale. Data Science Journal, 12, GRDI6–GRDI12.Google Scholar
  4. Buche, P., et al. (2013). Intégration de données hétérogènes et imprecise guide par une resource termino-ontologique. application au domaine des sciences du vivant. RSTI série Revue dIntelligence Artificielle, 27(4–5), 539–568.Google Scholar
  5. Caracciolo, C., Stellato, A., Rajbhandari, S., Morshed, A., Johannsen, G., Keizer, J., et al. (2012). Thesaurus maintenance, alignment and publication as linked data: The AGROVOC use case. IJMSO, 7(1), 65–75.CrossRefGoogle Scholar
  6. Cruz, I. F., Palmonari, M., Caimi, F., & Stroe, C. (2011). Towards “on the go” matching of linked open data ontologies. In Workshop on Discovering Meaning On the Go in Large Heterogeneous Data 2011 (LHD-11), Barcelona, Spain, July 16, 2011.Google Scholar
  7. David, J. (2007). AROMA: une méthode pour la découverte d’alignements orientés entre ontologies partir de règles d’association. Ph.D. thesis, Université de Nantes.Google Scholar
  8. David, J., Euzenat, J., Scharffe, F., & Trojahn dos Santos, C. (2011). The alignment api 4.0. Semantic Web, 2(1):310.Google Scholar
  9. Eckert, K., Meilicke, C., & Stuckenschmidt, H. (2009). Improving ontology matching using meta-level learning. In The semantic web: research and applications (Vol. 5554, pp. 158–172). Lecture notes in computer science. Berlin, Heidelberg: Springer.Google Scholar
  10. Euzenat, J. (2008). Algebras of ontology alignment relations. In International Semantic Web Conference (Vol. 5318). Lecture notes in computer science. Heidelberg: Springer.Google Scholar
  11. Euzenat, J., & Shvaiko, P. (2007). Ontology matching (Vol. 18). Heidelberg: Springer.MATHGoogle Scholar
  12. Ghoula, N., Nindanga, H., & Falquet, G. (2014). Opérateurs de gestion des alignements de ressources de connaissances hétérogènes (to be completed).Google Scholar
  13. Grütze, T., Böhm, C., & Naumann, F. (2012). Holistic and scalable ontology alignment for linked open data. In C. Bizer, T. Heath, T. Berners-Lee, & M. Hausenblas (Eds.), WWW2012 Workshop on Linked Data on the Web, Lyon, France, 16 April, 2012 (Vol. 937). CEUR workshop proceedings. CEUR-WS.org.Google Scholar
  14. Jain, P., Hitzler, P., Sheth, A. P., Verma, K., & Yeh, P. Z. (2010). Ontology alignment for linked open data. In Proceedings of the 9th International Semantic Web Conference on The Semantic Web - Volume Part I (pp. 402–417). Berlin, Heidelberg: Springer.Google Scholar
  15. Jiménez-Ruiz, E., & Grau, B. C. (2011). LogMap: Logic-based and scalable ontology matching. In The Semantic WebISWC 2011 (pp. 273–288). Springer.Google Scholar
  16. Lee, Y., Sayyadian, M., Doan, A., & Rosenthal, A. S. (2007). eTuner: Tuning schema matching software using synthetic scenarios. The VLDB Journal, 16(1), 97–122.CrossRefGoogle Scholar
  17. McCrae, J., Spohr, D., & Cimiano, P. (2011). Linking Lexical resources and ontologies on the semantic web with lemon. In G. Antoniou, M. Grobelnik, E. P. B. Simperl, B. Parsia, D. Plexousakis, P. D. Leenheer, & J. Z. Pan (Eds.), ESWC (1) (Vol. 6643, pp. 245–259). Lecture notes in computer science. Springer.Google Scholar
  18. Mochol, M., & Jentzsch, A. (2008). Towards a rule-based matcher selection. In A. Gangemi & J. Euzenat (Eds.), Knowledge engineering: Practice and patterns (Vol. 5268, pp. 109–119). Lecture notes in computer science. Berlin, Heidelberg: Springer.Google Scholar
  19. Mougin, F., & Grabar, N. (2013). Using a cross-language approach to acquire new mappings between two biomedical terminologies. In Artificial intelligence in medicine (Vol. 7885, pp. 221–226). Lecture notes in computer science. Berlin, Heidelberg: Springer.Google Scholar
  20. Nikolov, A., Uren, V., Motta, E., & Roeck, A. (2009). Overcoming schema heterogeneity between linked semantic repositories to improve coreference resolution. In Proceedings of the 4th Asian Conference on The Semantic Web, ASWC 2009 (pp. 332–346). Berlin, Heidelberg: Springer.Google Scholar
  21. Parundekar, R., Knoblock, C. A., & Ambite, J. L. (2012). Discovering concept coverings in ontologies of linked data sources. In P. Cudré-Mauroux, et al. (Eds.), International Semantic Web Conference (1) (Vol. 7649, pp. 427–443). Lecture notes in computer science. Springer.Google Scholar
  22. Pernelle, N. & Sais, F. (2011). LDM: Link discovery method for new resource integration. In M.-E. V. Zoé Lacroix & Edna Ruckhaus (Eds.), Fourth International Workshop on Resource Discovery, Heraklion, Grèce (Vol. 737, pp. 94–108).Google Scholar
  23. Rahm, E. (2011). Towards large-scale schema and ontology matching. In Z. Bellahsene, A. Bonifati & E. Rahm (Eds.), Schema Matching and Mapping (pp. 3–27). Springer.Google Scholar
  24. Reymonet, A., Thomas, J., & Aussenac-Gilles, N. (2007). Modelling ontological and terminological resources in OWL DL. In OntoLex 2007—Workshop at ISWC07, Busan, South-Korea Google Scholar
  25. Roche, C., Calberg-Challot, M., Damas, L., & Rouard, P. (2009). Ontoterminology—a new paradigm for terminology. In J. L. G. Dietz (Ed.), KEOD (pp. 321–326). INSTICC Press.Google Scholar
  26. Shvaiko, P., & Euzenat, J. (2013). Ontology matching: state of the art and future challenges. IEEE Transactions on Knowledge and Data Engineering, 25(1), 158–176.CrossRefGoogle Scholar
  27. Spiliopoulos, V., & Vouros, G. (2012). Synthesizing ontology alignment methods using the max-sum algorithm. IEEE Transactions on Knowledge and Data Engineering, 24(5), 940–951.CrossRefGoogle Scholar
  28. Steyskal, S., & Polleres, A. (2013). Mix ‘n’ match: An alternative approach for combining ontology matchers. In R Meersman, H. Panetto, T. S. Dillon, J. Eder, Z. Bellahsene, N. Ritter, P. D. Leenheer & D. Dou (Eds.), On the Move to Meaningful Internet Systems: OTM 2013 Conferences - Confederated International Conferences: CoopIS, DOA-Trusted Cloud, and ODBASE 2013, Graz, Austria, September 9–13, 2013. Proceedings (Vol. 8185, pp. 555–563). Lecture notes in computer science. Springer.Google Scholar
  29. Stoilos, G., Stamou, G., & Kollias, S. (2005). A string metric for ontology alignment. In The Semantic Web—ISWC 2005 (pp. 624–637). Springer.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Thomas Hecht
    • 1
  • Patrice Buche
    • 2
  • Juliette Dibie
    • 1
  • Liliana Ibanescu
    • 1
  • Cassia Trojahn dos Santos
    • 3
  1. 1.UMR518 MIA-ParisINRA - AgroParisTechParis Cedex 05France
  2. 2.INRA & LIRMMMontpellier Cedex 2France
  3. 3.IRIT & UTM2Toulouse Cedex 9France

Personalised recommendations