Advertisement

Online/Offline Public-Index Predicate Encryption for Fine-Grained Mobile Access Control

  • Weiran Liu
  • Jianwei Liu
  • Qianhong Wu
  • Bo QinEmail author
  • Kaitai Liang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9879)

Abstract

Public-Index Predicate Encryption (PIPE) allows users to encrypt according to boolean predicates defined on arbitrary attributes. The expensive algebraic operations are the major efficiency obstacle for PIPE to be applied to mobile clouds. This paper proposes a general Online/Offline PIPE (OO-PIPE) framework to address this issue. First, we propose a generic transformation from a Large Universe PIPE (LU-PIPE) secure against chosen plaintext attack (CPA) to OO-PIPE in the same security model. The challenge is to generate ciphertext without the knowledge of the associated ciphertext attributes in the offline phase. We address the challenge by identifying an interesting attribute-malleability property in many LU-PIPE schemes. The property allows an encryptor to efficiently malleate a ciphertext associated with one ciphertext attribute to any assigned ciphertext attribute. Second, we design a generic transformation from CPA-secure LU-PIPE to OO-PIPE secure against adaptively chosen ciphertext attack (CCA2), assuming the underlying LU-PIPE has attribute-malleability and public-verifiability properties. The main obstacle here is that the online/offline mechanism endogenously implies forgery in the sense that a pre-computed ciphertext must be able to be efficiently malleated to the resulting ciphertext associated with a different ciphertext attribute and a plaintext, while any efficient valid ciphertext forgery is forbidden in CCA2 security. We circumvent this obstacle by employing a universally collision resistant Chameleon hash, namely, only the original encryptor can malleate the ciphertext to associate with different attributes and provide a hash collision of the ciphertext components.

Keywords

Decryption Algorithm Security Parameter Mobile Cloud Computing Negligible Probability Online Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This paper is supported by the Natural Science Foundation of China through projects 61370190, 61272501, 61402029, 61472429, 61202465 and 61532021, by the Guangxi natural science foundation through project 2013GXNSFBB053005. K. Liang is supported by privacy-aware retrieval and modelling of genomic data (No. 13283250), the Academy of Finland.

References

  1. 1.
    Abdalla, M., et al.: Searchable encryption revisited: consistency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: S&P 2007, pp. 321–334 (2007)Google Scholar
  3. 3.
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based techniques. In: CCS 2005, pp. 320–329. ACM (2005)Google Scholar
  8. 8.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Cheung, L., Newport, C.: Provably secure ciphertext policy abe. In: CCS 2007, pp. 456–465. ACM (2007)Google Scholar
  10. 10.
    Chow, S.S.M., Liu, J.K., Zhou, J.: Identity-based online/offline key encapsulation and encryption. In: Cheung, B.S.N., Hui, L.C.K., Sandhu, R.S., Wong, D.S. (eds.) ASIACCS 2011, pp. 52–60. ACM (2011)Google Scholar
  11. 11.
    Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263–275. Springer, Heidelberg (1990)Google Scholar
  12. 12.
    Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  13. 13.
    Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: CCS 2006, pp. 89–98. ACM (2006)Google Scholar
  16. 16.
    Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable oblivious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 265–282. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Guo, F., Mu, Y., Chen, Z.: Identity-based online/offline encryption. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 247–261. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Hohenberger, S., Waters, B.: Online/offline attribute-based encryption. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 293–310. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  19. 19.
    Huan, J., Yang, Y., Huang, X., Yuen, T.H., Li, J., Cao, J.: Accountable mobile e-commerce scheme via identity-based plaintext-checkable encryption. Inf. Sci. 345, 143–155 (2016)CrossRefGoogle Scholar
  20. 20.
    Huang, X., Liu, J.K., Tang, S., Xiang, Y., Liang, K., Xu, L., Zhou, J.: Cost-effective authentic and anonymous data sharing with forward security. IEEE Trans. Comput. 64(4), 971–983 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet Society (2000)Google Scholar
  23. 23.
    Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys. In: S&P 2010, pp. 273–285. IEEE (2010)Google Scholar
  24. 24.
    Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achieving full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Liu, J.K., Zhou, J.: An efficient identity-based online/offline encryption scheme. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 156–167. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Liu, W., Liu, J., Wu, Q., Qin, B., Zhou, Y.: Practical direct chosen ciphertext secure key-policy attribute-based encryption with public ciphertext test. In: Kutyłowski, M., Vaidya, J. (eds.) ICAIS 2014, Part II. LNCS, vol. 8713, pp. 91–108. Springer, Heidelberg (2014)Google Scholar
  29. 29.
    Liu, Z., Xu, L., Chen, Z., Mu, Y., Guo, F.: Hierarchical identity-based online/offline encryption. In: ICYCS 2008, pp. 2115–2119. IEEE (2008)Google Scholar
  30. 30.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  32. 32.
    Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large universe attribute-based encryption. In: CCS 2013, pp. 463–474. ACM (2013)Google Scholar
  33. 33.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  34. 34.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  35. 35.
    Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  36. 36.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  37. 37.
    Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: Generic constructions for chosen-ciphertext secure attribute based encryption. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 71–89. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  38. 38.
    Yamada, S., Attrapadung, N., Santoso, B., Schuldt, J.C.N., Hanaoka, G., Kunihiro, N.: Verifiable predicate encryption and applications to CCA security and anonymous predicate authentication. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 243–261. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  39. 39.
    Yeh, L., Huang, J.: Pbs: a portable billing scheme with fine-grained access control for service-oriented vehicular networks. IEEE Trans. Mob. Comput. 13(11), 2606–2619 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Weiran Liu
    • 1
    • 2
  • Jianwei Liu
    • 1
  • Qianhong Wu
    • 1
    • 3
    • 4
  • Bo Qin
    • 5
    Email author
  • Kaitai Liang
    • 6
  1. 1.School of Electronic and Information EngineeringBeihang UniversityBeijingChina
  2. 2.State Key Laboratory of Integrated Services NetworksXidian UniversityXi’anChina
  3. 3.State Key Laboratory of CryptologyBeijingChina
  4. 4.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  5. 5.Key Laboratory of Data Engineering and Knowledge Engineering, Ministry of Education, School of InformationRenmin University of ChinaBeijingChina
  6. 6.Department of Computer ScienceAalto UniversityEspooFinland

Personalised recommendations