Measuring Cognitive Load for Map Tasks Through Pupil Diameter

  • Peter KieferEmail author
  • Ioannis Giannopoulos
  • Andrew Duchowski
  • Martin Raubal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9927)


In this paper we use pupil diameter as an indicator for measuring cognitive load for six different tasks on common web maps. Two eye tracking data sets were collected for different basemaps (37 participants and 1,328 trials in total). We found significant differences in mean pupil diameter between tasks, indicating low cognitive load for free exploration, medium cognitive load for search, polygon comparison, line following, and high cognitive load for route planning and focused search. Pupil diameter also changed over time within trials which can be interpreted as an increase in cognitive load for search and focused search, and a decrease for line following. Such results can be used for the adaptation of maps and geovisualizations based on their users’ cognitive load.


Cognitive Load Pupil Diameter Cognitive Load Theory Route Planning Extraneous Cognitive Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Supported by the Swiss National Science Foundation (grant no. 200021_162886).


  1. 1.
    Ahern, S., Beatty, J.: Pupillary responses during information processing vary with Scholastic Aptitude Test Scores. Science 205(4412), 1289–1292 (1979)CrossRefGoogle Scholar
  2. 2.
    Bartels, M., Marshall, S.P.: Measuring cognitive workload across different eye tracking hardware platforms. In: ETRA 2012: Proceedings of the 2008 Symposium on Eye Tracking Research and Applications, Santa Barbara, CA. ACM (2012)Google Scholar
  3. 3.
    Beatty, J.: Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychol. Bull. 91(2), 276–292 (1982)CrossRefGoogle Scholar
  4. 4.
    Beatty, J., Lucero-Wagoner, B.: The pupillary system. In: Cacioppo, J.T., Tassinary, L.G., Bernston, G.G. (eds.) Handbook of Psychophysiology, 2nd edn, pp. 142–162. Cambridge University Press, Cambridge (2000)Google Scholar
  5. 5.
    Bunch, R.L., Lloyd, R.E.: The cognitive load of geographic information. Prof. Geogr. 58(2), 209–220 (2006)CrossRefGoogle Scholar
  6. 6.
    Coltekin, A., Lokka, I.E., Boér, A.: The utilization of publicly available map types by non-experts - a choice experiment. In: Proceedings of the 27th International Cartographic Conference (ICC2015), Rio de Janeiro, Brazil, pp. 23–28 (2015)Google Scholar
  7. 7.
    Fabrikant, S.I., Goldsberry, K.: Thematic relevance and perceptual salience of dynamic geovisualization displays. In: Proceedings 22th ICA/ACI International Cartographic Conference, Coruna (2005)Google Scholar
  8. 8.
    Fabrikant, S.I., Lobben, A.: Introduction: cognitive issues in geographic information visualization. Cartogr.: Int. J. Geogr. Inf. Geovisualization 44(3), 139–143 (2009)CrossRefGoogle Scholar
  9. 9.
    Giannopoulos, I., Kiefer, P., Raubal, M., Richter, K.-F., Thrash, T.: Wayfinding decision situations: a conceptual model and evaluation. In: Duckham, M., Pebesma, E., Stewart, K., Frank, A.U. (eds.) GIScience 2014. LNCS, vol. 8728, pp. 221–234. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Haapalainen, E., Kim, S., Forlizzi, J.F., Dey, A.K.: Psycho-physiological measures for assessing cognitive load. In: Proceedings of the 12th ACM international conference on Ubiquitous computing, pp. 301–310. ACM (2010)Google Scholar
  11. 11.
    Harrison, R., Flood, D., Duce, D.: Usability of mobile applications: literature review and rationale for a new usability model. J. Interact. Sci. 1(1), 1–16 (2013)CrossRefGoogle Scholar
  12. 12.
    Harrower, M.: The cognitive limits of animated maps. Cartogr.: Int. J. Geogr. Inf. Geovisualization 42(4), 349–357 (2007)CrossRefGoogle Scholar
  13. 13.
    Hess, E.H., Polt, J.M.: Pupil size in relation to mental activity during simple problem-solving. Science 143(3611), 1190–1192 (1964)CrossRefGoogle Scholar
  14. 14.
    Hirtle, S.C., Raubal, M.: Many to many mobile maps. In: Raubal, M., Mark, D., Frank, A. (eds.) Cognitive and Linguistic Aspects of Geographic Space - New Perspectives on Geographic Information Research, pp. 141–157. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Hyönä, J., Tommola, J., Alaja, A.M.: Pupil dilation as a measure of processing load in simultaneous interpretation and other language tasks. Q. J. Exp. Psychol. 48(3), 598–612 (1995)CrossRefGoogle Scholar
  16. 16.
    Kiefer, P., Giannopoulos, I., Raubal, M.: Using eye movements to recognize activities on cartographic maps. In: Proceedings of the 21st SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 488–491. ACM, New York (2013)Google Scholar
  17. 17.
    Kiefer, P., Giannopoulos, I., Raubal, M.: Where am I? Investigating map matching during self-localization with mobile eye tracking in an urban environment. Trans. GIS 18(5), 660–686 (2014)CrossRefGoogle Scholar
  18. 18.
    Klingner, J., Kumar, R., Hanrahan, P.: Measuring the task-evoked pupillary response with a remote eye tracker. In: Proceedings of the 2008 Symposium on Eye Tracking Research and Applications, pp. 69–72. ACM (2008)Google Scholar
  19. 19.
    Kruger, J.L., Hefer, E., Matthew, G.: Measuring the impact of subtitles on cognitive load: eye tracking and dynamic audiovisual texts. In: Proceedings of the 2013 Conference on Eye Tracking South Africa, pp. 62–66. ACM (2013)Google Scholar
  20. 20.
    Lloyd, R.E., Bunch, R.L.: Explaining map-reading performance efficiency: gender, memory, and geographic information. Cartogr. Geogr. Inf. Sci. 35(3), 171–202 (2008)CrossRefGoogle Scholar
  21. 21.
    Lloyd, R.E., Bunch, R.L.: Learning geographic information from a map and text: learning environment and individual differences. Cartogr.: Int. J. Geogr. Inf. Geovisualization 45(3), 169–184 (2010)CrossRefGoogle Scholar
  22. 22.
    Marshall, S.P.: Method and Apparatus for Eye Tracking Monitoring Pupil Dilation to Evaluate Cognitive Activity. US Patent No. 6,090,051, 18 July 2000Google Scholar
  23. 23.
    Mayer, R.E., Moreno, R.: Nine ways to reduce cognitive load in multimedia learning. Educ. Psychol. 38(1), 43–52 (2003)CrossRefGoogle Scholar
  24. 24.
    Ooms, K., De Maeyer, P., Fack, V.: Study of the attentive behavior of novice and expert map users using eye tracking. Cartogr. Geogr. Inf. Sci. 41(1), 37–54 (2014)CrossRefGoogle Scholar
  25. 25.
    Ooms, K., De Maeyer, P., Fack, V., Van Assche, E., Witlox, F.: Interpreting maps through the eyes of expert and novice users. Int. J. Geogr. Inf. Sci. 26(10), 1773–1788 (2012)CrossRefGoogle Scholar
  26. 26.
    Paas, F., Renkl, A., Sweller, J.: Cognitive load theory and instructional design: recent developments. Educ. Psychol. 38(1), 1–4 (2003)CrossRefGoogle Scholar
  27. 27.
    Reichenbacher, T.: Adaptive concepts for a mobile cartography. J. Geogr. Sci. 11(1), 43–53 (2001)CrossRefGoogle Scholar
  28. 28.
    Rossano, M.J., Moak, J.: Spatial representations acquired from computer models: cognitive load, orientation specificity and the acquisition of survey knowledge. Br. J. Psychol. 89(3), 481–497 (1998)CrossRefGoogle Scholar
  29. 29.
    Stark, L., Campbell, F.W., Atwood, J.: Pupil unrest: an example of noise in a biological servomechanism. Nature 182(4639), 857–858 (1958)CrossRefGoogle Scholar
  30. 30.
    Sweller, J.: Cognitive load during problem solving: effects on learning. Cogn. Sci. 12(2), 257–285 (1988)CrossRefGoogle Scholar
  31. 31.
    Sweller, J.: Cognitive load theory, learning difficulty, and instructional design. Learn. Instr. 4(4), 295–312 (1994)CrossRefGoogle Scholar
  32. 32.
    Sweller, J., Van Merrienboer, J.J., Paas, F.G.: Cognitive architecture and instructional design. Educ. Psychol. Rev. 10(3), 251–296 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Peter Kiefer
    • 1
    Email author
  • Ioannis Giannopoulos
    • 1
  • Andrew Duchowski
    • 2
  • Martin Raubal
    • 1
  1. 1.Institute of Cartography and Geoinformation, ETH ZürichZürichSwitzerland
  2. 2.School of ComputingClemson UniversityClemsonUSA

Personalised recommendations