Exploring the Notion of Spatial Lenses

  • Christopher Allen
  • Thomas Hervey
  • Sara Lafia
  • Daniel W. Phillips
  • Behzad Vahedi
  • Werner KuhnEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9927)


We explore the idea of spatial lenses as pieces of software interpreting data sets in a particular spatial view of an environment. The lenses serve to prepare the data sets for subsequent analysis in that view. Examples include a network lens to view places in a literary text, or a field lens to interpret pharmacy sales in terms of seasonal allergy risks. The theory underlying these lenses is that of core concepts of spatial information, but here we exploit how these concepts enhance the usability of data rather than that of systems. Spatial lenses also supply transformations between multiple views of an environment, for example, between field and object views. They lift these transformations from the level of data format conversions to that of understanding an environment in multiple ways. In software engineering terms, spatial lenses are defined by constructors, generating instances of core concept representations from spatial data sets. Deployed as web services or libraries, spatial lenses would make larger varieties of data sets amenable to mapping and spatial analysis, compared to today’s situation, where file formats determine and limit what one can do. To illustrate and evaluate the idea of spatial lenses, we present a set of experimental lenses, implemented in a variety of languages, and test them with a variety of data sets, some of them non-spatial.


Conceptual lenses Core concepts of spatial information Spatial analysis Data usability Format conversions 



The work presented in this paper (and the writing of the paper) was part of a graduate research seminar at the Geography Department of UCSB. All authors have contributed equally to the paper and are therefore listed in alphabetical order, with the seminar teacher going last. Additional contributions by Carlos Baez, Andrea Ballatore, Chandra Krintz, George Technitis, and Rich Wolski are gratefully acknowledged. The work was supported by the Center for Spatial Studies at UCSB.


  1. 1.
    Camara, G., Egenhofer, M.J., Ferreira, K., Andrade, P., Queiroz, G., Sanchez, A., Jones, J., Vinhas, L.: Fields as a generic data type for big spatial data. In: Duckham, M., Pebesma, E., Stewart, K., Frank, A.U. (eds.) GIScience 2014. LNCS, vol. 8728, pp. 159–172. Springer, Heidelberg (2014)Google Scholar
  2. 2.
    Lowe, M.: Night Lights and ArcGIS: A Brief Guide (2014). Accessed Nov 2015
  3. 3.
    Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6), 377–387 (1970)CrossRefzbMATHGoogle Scholar
  4. 4.
    Kuhn, W., Kauppinen, T., Janowicz, K.: Linked data - a paradigm shift for geographic information science. In: Duckham, M., Pebesma, E., Stewart, K., Frank, A.U. (eds.) GIScience 2014. LNCS, vol. 8728, pp. 173–186. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Vahedi, B., Kuhn, W., Ballatore, A.: Question based spatial computing - a case study. In: Sarjakoski, T., Santos, M.Y., Sarjakoski, L.T. (eds.) AGILE 2016. LNCS. Springer International Publishing, Heidelberg (2016)Google Scholar
  6. 6.
    Albrecht, J.: Universal analytical GIS operations: a task-oriented systematization of data structure-independent GIS functionality. In: Geographic Information Research: Transatlantic Perspectives, pp. 577–591 (1998)Google Scholar
  7. 7.
    Tomlin, C.D.: Geographic Information Systems and Cartographic Modeling. Prentice Hall, Upper Saddle River (1990). (No. 526.0285 T659)Google Scholar
  8. 8.
    Goodchild, M.F., Yuan, M., Cova, T.J.: Towards a general theory of geographic representation in GIS. Int. J. Geogr. Inf. Sci. 21(3), 239–260 (2007)CrossRefGoogle Scholar
  9. 9.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, no. 34, pp. 226–231 (1996)Google Scholar
  10. 10.
    Hill, L.L.: Georeferencing: The Geographic Associations of Information. MIT Press, Cambridge (2009)CrossRefGoogle Scholar
  11. 11.
    De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Convex hulls, mixing things. In: De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C. (eds.) Computational Geometry, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Templeton, C., Brown, T., Battacharyya, S., Boyd-Graber, J.: Mining the dispatch under supervision: using casualty counts to guide topics from the richmond daily dispatch cor. In: Chicago Colloquium on Digital Humanities and Computer Science (2011)Google Scholar
  13. 13.
    Jones, K. Bruce Riitters, K.H., Wickham, J.D., Roger Jr., D., O’Neill, R.V., Chaloud, D.J., Smith, E.R., Neale, A.C.: An ecological assessment of the United States mid-Atlantic region: a landscape atlas (1997)Google Scholar
  14. 14.
    Brown, D.G., Polsky, C., Bolstad, P., Brody, S.D., Hulse, D., Kroh, R., Loveland, T.R., Thomson, A.: Land use and land cover change. In: Melillo, J.M., Richmond, T.C., Yohe, G.W. (eds.) Climate Change Impacts in the United States. The Third National Climate Assessment, pp. 318–332. U.S. Global Change Research Program (2014)Google Scholar
  15. 15.
    Walter, V.: Object-based classification of remote sensing data for change detection. ISPRS J. Photogramm. Remote Sens. 58(3), 225–238 (2004)CrossRefGoogle Scholar
  16. 16.
    Kuhn, W., Ballatore, A.: Designing a language for spatial computing. In: Bacao, F., Santos, M.Y., Painho, M. (eds.) AGILE 2015. LNCS, pp. 309–326. Springer International Publishing, Heidelberg (2015)Google Scholar
  17. 17.
    Liskov, B., Guttag, J.: Abstraction and Specification in Program Development. MIT press, Cambridge (1986)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christopher Allen
    • 2
  • Thomas Hervey
    • 1
  • Sara Lafia
    • 1
  • Daniel W. Phillips
    • 1
  • Behzad Vahedi
    • 1
  • Werner Kuhn
    • 1
    Email author
  1. 1.Department of GeographyUniversity of California Santa Barbara (UCSB)Santa BarbaraUSA
  2. 2.Department of GeographySan Diego State University (SDSU)San DiegoUSA

Personalised recommendations