Exploratory Chronotopic Data Analysis

  • Benjamin Adams
  • Mark Gahegan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9927)


The intrinsic connection between place, space, and time in narrative texts is the subject of chronotopic literary analysis. We take the notion of the chronotope and apply it to exploratory analysis of unstructured big data. Exploratory chronotopic data analysis provides a data-driven perspective on how place, space, and time are connected in large, crowdsourced text collections. In this study, we processed the English Wikipedia text to find all co-occurrences of named places and dates and discovered that times are linked to places in a large majority of cases. We analyzed these millions of connections between places and dates and discovered a number of interesting trends. Because of the scale of the data involved, we suggest that chronotopic data analysis will lead to the development of new data models and methods for geographic information science and related fields, such as digital humanities.


Place Time Chronology Historical geographic information science Big data Volunteered geographic information 


  1. 1.
    Adams, B., Janowicz, K.: Thematic signatures for cleansing and enriching place-related linked data. Int. J. Geogr. Inf. Sci. 29(4), 556–579 (2015)CrossRefGoogle Scholar
  2. 2.
    Adams, B., McKenzie, G., Gahegan, M.: Frankenplace: interactive thematic mapping for ad hoc exploratory search. In: Proceedings of the 24th International Conference on World Wide Web, pp. 12–22. IW3C2 (2015)Google Scholar
  3. 3.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bakhtin, M.: Forms of time and of the chronotope in the novel. In: The Dialogic Imagination, pp. 84–258. University of Texas Press, Austin (1981)Google Scholar
  5. 5.
    Bemong, N., Borghart, P., De Dobbeleer, M., Demoen, K., De Temmerman, K., Keunen, B.: Bakhtin’s Theory of the Literary Chronotope: Reflections, Applications, Perspectives. Academia Press, Gent (2010)Google Scholar
  6. 6.
    Borg, I., Groenen, P.J.: Modern Multidimensional Scaling: Theory and Applications. Springer Science & Business Media, New York (2005)zbMATHGoogle Scholar
  7. 7.
    Galton, A.: Fields and objects in space, time, and space-time. Spat. Cogn. Comput. 4(1), 39–68 (2004)MathSciNetGoogle Scholar
  8. 8.
    Goodchild, M.F.: Formalizing place in geographic information systems. In: Burton, L.M., Matthews, S.A., Leung, M., Kemp, S.P., Takeuchi, D.T. (eds.) Communities, Neighborhoods, and Health, pp. 21–33. Springer, Berlin (2011)CrossRefGoogle Scholar
  9. 9.
    Graham, M., Hogan, B., Straumann, R.K., Medhat, A.: Uneven geographies of user-generated information: patterns of increasing informational poverty. Ann. Assoc. Am. Geogr. 104(4), 746–764 (2014)CrossRefGoogle Scholar
  10. 10.
    Gregory, I., Donaldson, C., Murrieta-Flores, P., Rayson, P.: Geoparsing, gis, and textual analysis: current developments in spatial humanities research. Int. J. Humanit. Comput. 9(1), 1–14 (2015)CrossRefGoogle Scholar
  11. 11.
    Hill, L.L.: Core elements of digital gazetteers: placenames, categories, and footprints. In: Borbinha, J.L., Baker, T. (eds.) ECDL 2000. LNCS, vol. 1923, pp. 280–290. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Janowicz, K.: The role of space and time for knowledge organization on the semantic web. Semant. Web 1(1, 2), 25–32 (2010)Google Scholar
  13. 13.
    Jordan, T., Raubal, M., Gartrell, B., Egenhofer, M.: An affordance-based model of place in GIS. In: 8th International Symposium on Spatial Data Handling, SDH, vol. 98, pp. 98–109 (1998)Google Scholar
  14. 14.
    Knowles, A.K., Hillier, A.: Placing History: How Maps, Spatial Data, and GIS are Changing Historical Scholarship. ESRI Inc., Redlands (2008)Google Scholar
  15. 15.
    Langran, G.: Issues of implementing a spatiotemporal system. Int. J. Geogr. Inf. Sci. 7(4), 305–314 (1993)CrossRefGoogle Scholar
  16. 16.
    Mei, Q., Liu, C., Su, H., Zhai, C.: A probabilistic approach to spatiotemporal theme pattern mining on weblogs. In: Proceedings of the 15th International Conference on World Wide Web, pp. 533–542. ACM (2006)Google Scholar
  17. 17.
    Michel, J.B., Shen, Y.K., Aiden, A.P., Veres, A., Gray, M.K., Pickett, J.P., Hoiberg, D., Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak, M.A., Aiden, E.L.: Quantitative analysis of culture using millions of digitized books. Science 331(6014), 176–182 (2011)CrossRefGoogle Scholar
  18. 18.
    Miller, H.J.: Modelling accessibility using space-time prism concepts within geographical information systems. Int. J. Geogr. Inf. Syst. 5(3), 287–301 (1991)CrossRefGoogle Scholar
  19. 19.
    Peebles, C.S., Kus, S.M.: Some archaeological correlates of ranked societies. Am. Antiq. 42(3), 421–448 (1977)CrossRefGoogle Scholar
  20. 20.
    Peuquet, D.J.: Making space for time: Issues in space-time data representation. GeoInformatica 5(1), 11–32 (2001)CrossRefzbMATHGoogle Scholar
  21. 21.
    Pustejovsky, J., Castano, J.M., Ingria, R., Sauri, R., Gaizauskas, R.J., Setzer, A., Katz, G., Radev, D.R.: TimeML: Robust specification of event and temporal expressions in text. New Dir. Question Answering 3, 28–34 (2003)Google Scholar
  22. 22.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, pp. 851–860. ACM (2010)Google Scholar
  23. 23.
    Shannon, C.E.: The mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Strötgen, J., Gertz, M.: Multilingual and cross-domain temporal tagging. Lang. Resour. Eval. 47(2), 269–298 (2013)CrossRefGoogle Scholar
  25. 25.
    Sui, D., Goodchild, M.: The convergence of GIS and social media: challenges for GIScience. Int. J. Geogr. Inf. Sci. 25(11), 1737–1748 (2011)CrossRefGoogle Scholar
  26. 26.
    Tomaszewski, B., MacEachren, A.M.: Geo-historical context support for information foraging and sensemaking: conceptual model, implementation, and assessment. In: 2010 IEEE Symposium on Visual Analytics Science and Technology (VAST), pp. 139–146. IEEE (2010)Google Scholar
  27. 27.
    Ye, M., Janowicz, K., Mülligann, C., Lee, W.C.: What you are is when you are: the temporal dimension of feature types in location-based social networks. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 102–111. ACM (2011)Google Scholar
  28. 28.
    Yu, H.: Spatio-temporal GIS design for exploring interactions of human activities. Cartography Geogr. Inf. Sci. 33(1), 3–19 (2006)CrossRefGoogle Scholar
  29. 29.
    Yuan, M.: Temporal GIS and applications. In: Shekhar, S., Xiong, H. (eds.) Encyclopedia of GIS, pp. 1147–1150. Springer, New York (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Centre for eResearchThe University of AucklandAucklandNew Zealand

Personalised recommendations