Challenges and Perspectives of the Polymer-Induced Liquid-Precursor Process: The Pathway from Liquid-Condensed Mineral Precursors to Mesocrystalline Products

  • Stephan E. WolfEmail author
  • Laurie B. GowerEmail author


The polymer-induced liquid-precursor (PILP) process falls within the category of nonclassical pathways of crystallization and proceeds in a colloid-mediated fashion via a liquid amorphous intermediate. By addition of tiny amounts of polyionic polymers like polyaspartate, polyamines or selected biomineralization proteins, classical nucleation of a solid crystalline phase is suppressed which, in turn, promotes the formation of a liquid-condensed phase of mineral precursor. This unusual ion-enriched liquid-amorphous phase becomes the crucial agent of the precipitation reaction; the process of mineralization is converted from a solution crystallization process to a pseudomorphic solidification process. This change of pathway provides efficient means to synthesize an impressive multitude of mineral morphologies, many of which mimic the features long considered enigmatic in biominerals. Mosaic and mesocrystalline thin films, replicas, hierarchical microspheres or fibrous mineral structures – all these non-equilibrium and non-facetted morphologies can be readily generated by means of the PILP process. In this chapter, we will review our current state of knowledge of this extraordinary crystallization pathway with a special regard to the as of yet unanswered questions. We will discuss the mechanistic foundations of the PILP process and highlight its ultimate provenance in the unexpected liquid/liquid phase separation of mineral solutions, which even occur under additive-free conditions, but do not seem suitable for morphosynthetic exploitation if generated in the absence of polymeric additives.


Liquid/liquid phase separation Calcium carbonate Nonclassical crystallization PILP Mesocrystal Morphosynthesis 



This material is based upon the work supported by the National Science Foundation (NSF) under Grant Number DMR-1309657 and by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health (NIH) under Award Number R01DK092311 and the National Institute of Dental and Craniofacial Research (NIDCR) Award Number 5R01DE016849-07. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or the National Institutes of Health.

SEW gratefully acknowledges financial support by an Emmy Noether research grant issued by the German Research Foundation (DFG, N° WO1712/3-1) and received further support by the Cluster of Excellence “Engineering of Advanced Materials—Hierarchical Structure Formation for Functional Devices” funded by the DFG (EXC 315).


  1. Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater 15:959–970. doi: 10.1002/adma.200300381 CrossRefGoogle Scholar
  2. Aizenberg J, Lambert G, Addadi L, Weiner S (1996) Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates. Adv Mater 8:222–226CrossRefGoogle Scholar
  3. Amos FF, Sharbaugh DM, Talham DR, Gower LB, Fricke M, Volkmer D (2007) Formation of single-crystalline aragonite tablets/films via an amorphous precursor. Langmuir 23:1988–1994. doi: 10.1021/la061960n CrossRefGoogle Scholar
  4. Amos F, Dai L, Kumar R, Khan S, Gower LB (2009) Mechanism of formation of concentrically laminated spherules: implication to Randall’s plaque and stone formation. Urol Res 37:11–17CrossRefGoogle Scholar
  5. Andreassen J-P, Lewis AE (2017) Classical and non-classical theories of crystal growth. In: Benning LG, Gebauer D, Kellermeier M, Van Driessche AES (ed) New perspectives on mineral nucleation and growth. Springer, Cham, pp 137–154Google Scholar
  6. Asakura S, Oosawa F (1958) J Polym Sci 33:183–192CrossRefGoogle Scholar
  7. Balz M, Therese HA, Li J, Gutmann JS, Kappl M, Nasdala L, Hofmeister W, Butt H-J, Tremel W (2005) Crystallization of vaterite nanowires by the cooperative interaction of tailor-made nucleation surfaces and polyelectrolytes. Adv Funct Mater 15:683–688. doi: 10.1002/adfm.200400333 CrossRefGoogle Scholar
  8. Berg JK, Jordan T, Binder Y, Börner HG, Gebauer D (2013) Mg2+ tunes the wettability of liquid precursors of CaCO3: toward controlling mineralization sites in hybrid materials. J Am Chem Soc 135:12512–12515. doi: 10.1021/ja404979z CrossRefGoogle Scholar
  9. Bergström L, Sturm (née Rosseeva) EV, Salazar-Alvarez G, Cölfen H (2015) Mesocrystals in biominerals and colloidal arrays. Acc Chem Res 150504141715009. doi:  10.1021/ar500440b
  10. Bewernitz MA, Gebauer D, Long J, Cölfen H, Gower LB (2012) A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss 159:291. doi: 10.1039/c2fd20080e CrossRefGoogle Scholar
  11. Burwell AK, Thula-Mata T, Gower LB, Habeliz S, Kurylo M, Ho SP, Chien Y-C, Cheng J, Cheng NF, Gansky SA, Marshall SJ, Marshall GW (2012) Functional remineralization of dentin lesions using polymer-induced liquid-precursor process. PLoS One 7:e38852. doi:  10.1371/journal.pone.0038852
  12. Cahn JW, Hilliard JE (1959) Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J Chem Phys 31:688CrossRefGoogle Scholar
  13. Cantaert B, Kim Y-Y, Ludwig H, Nudelman F, Sommerdijk NAJM, Meldrum FC (2012) Think positive: phase separation enables a positively charged additive to induce dramatic changes in calcium carbonate morphology. Adv Funct Mater 22:907–915. doi: 10.1002/adfm.201102385 CrossRefGoogle Scholar
  14. Cantaert B, Verch A, Kim Y-Y, Ludwig H, Paunov VN, Kröger R, Meldrum FC (2013) Formation and structure of calcium carbonate thin films and nanofibers precipitated in the presence of poly(allylamine hydrochloride) and magnesium ions. Chem Mater 25:4994–5003. doi: 10.1021/cm403497g CrossRefGoogle Scholar
  15. Cheng X, Gower LB (2006) Molding mineral within microporous hydrogels by a polymer-induced liquid-precursor (PILP) process. Biotechnol Prog 22:141–149. doi: 10.1021/bp050166+ CrossRefGoogle Scholar
  16. Cheng X, Varona PL, Olszta MJ, Gower LB (2007) Biomimetic synthesis of calcite films by a polymer-induced liquid-precursor (PILP) process. J Cryst Growth 307:395–404. doi: 10.1016/j.jcrysgro.2007.07.006 CrossRefGoogle Scholar
  17. Cölfen H, Antonietti M (2008) Mesocrystals and nonclassical crystallization. Wiley-VCH, ChichesterCrossRefGoogle Scholar
  18. Dai L, Cheng X, Gower LB (2008a) Transition bars during transformation of an amorphous calcium carbonate precursor. Chem Mater 20:6917–6928. doi: 10.1021/cm800760p CrossRefGoogle Scholar
  19. Dai L, Douglas EP, Gower LB (2008b) Compositional analysis of a polymer-induced liquid-precursor (PILP) amorphous CaCO3 phase. J Non-Cryst Solids 354:1845–1854. doi: 10.1016/j.jnoncrysol.2007.10.022 CrossRefGoogle Scholar
  20. Dauphin Y (2008) The nanostructural unity of Mollusc shells. Mineral Mag 72:243–246. doi: 10.1180/minmag.2008.072.1.243 CrossRefGoogle Scholar
  21. De Yoreo JJ, Sommerdijk N, Dove P (2017) Nucleation pathways in electrolyte solutions. In: Benning LG, Gebauer D, Kellermeier M, Van Driessche AES (ed) New perspectives on mineral nucleation and growth. Springer, Cham, pp 1–24Google Scholar
  22. Demichelis R, Raiteri P, Gale JD, Quigley D, Gebauer D (2011) Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat Commun 2:590. doi: 10.1038/ncomms1604 CrossRefGoogle Scholar
  23. Evans JS (2013) “Liquid-like” biomineralization protein assemblies: a key to the regulation of non-classical nucleation. CrystEngComm 15:8388. doi: 10.1039/c3ce40803e CrossRefGoogle Scholar
  24. Faatz M (2005) Kontrollierte Fällung von amorphem Calciumcarbonat durch homogene Carbonatfreisetzung. Johannes-Gutenberg University of Mainz, GermanyGoogle Scholar
  25. Faatz M, Gröhn F, Wegner G (2004) Amorphous calcium carbonate: synthesis and potential intermediate in biomineralization. Adv Mater 16:996–1000. doi: 10.1002/adma.200306565 CrossRefGoogle Scholar
  26. Faatz M, Gröhn F, Wegner G (2005) Mineralization of calcium carbonate by controlled release of carbonate in aqueous solution. Mater Sci Eng C 25:153–159. doi: 10.1016/j.msec.2005.01.005 CrossRefGoogle Scholar
  27. Faraday Discussions Transcripts (2007) Transcript of the general discussion. In: Crystal growth and nucleation: Faraday Discussion N°136. RSC PublishingGoogle Scholar
  28. Faraday Discussions Transcripts (2012) Transcript of the general discussion. In: Crystallisation – a biological perspective: Faraday Discussion N°159. RSC PublishingGoogle Scholar
  29. Freeman CL (2014) Personal communicationGoogle Scholar
  30. Gal A, Habraken W, Gur D, Fratzl P, Weiner S, Addadi L (2013) Calcite crystal growth by a solid-state transformation of stabilized amorphous calcium carbonate nanospheres in a hydrogel. Angew Chem Int Ed 125:4967–4970. doi: 10.1002/ange.201210329 CrossRefGoogle Scholar
  31. Gal A, Kahil K, Vidavsky N, DeVol RT, Gilbert PUPA, Fratzl P, Weiner S, Addadi L (2014) Particle accretion mechanism underlies biological crystal growth from an amorphous precursor phase. Adv Funct Mater 24:5420–5426,  10.1002/adfm.201400676 CrossRefGoogle Scholar
  32. Galkin O, Vekilov PG (2000a) Are nucleation kinetics of protein crystals similar to those of liquid droplets? J Am Chem Soc 122:156–163. doi: 10.1021/ja9930869 CrossRefGoogle Scholar
  33. Galkin O, Vekilov PG (2000b) Control of protein crystal nucleation around the metastable liquid-liquid phase boundary. Proc Natl Acad Sci U S A 97:6277–6281. doi: 10.1073/pnas.110000497 CrossRefGoogle Scholar
  34. Gebauer D, Völkel A, Cölfen H (2008) Stable prenucleation calcium carbonate clusters. Science 322:1819–1822. doi: 10.1126/science.1164271 CrossRefGoogle Scholar
  35. Gebauer D, Cölfen H, Verch A, Antonietti M (2009) The multiple roles of additives in CaCO3 crystallization: a quantitative case study. Adv Mater 21:435–439. doi: 10.1002/adma.200801614 CrossRefGoogle Scholar
  36. Gebauer D, Gunawidjaja PN, Ko JYP, Bacsik Z, Aziz B, Liu L, Hu Y, Bergström L, Tai C-W, Sham T-K, Edén M, Hedin N (2010) Proto-calcite and proto-vaterite in amorphous calcium carbonates. Angew Chem Int Ed 122:9073–9075. doi: 10.1002/ange.201003220 CrossRefGoogle Scholar
  37. Gebauer D, Kellermeier M, Gale JD, Bergström L, Cölfen H (2014) Pre-nucleation clusters as solute precursors in crystallisation. Chem Soc Rev 43:2348–2371. doi: 10.1039/c3cs60451a CrossRefGoogle Scholar
  38. Gehrke N, Nassif N, Pinna N, Antonietti M, Gupta HS, Cölfen H (2005) Retrosynthesis of nacre via amorphous precursor particles. Chem Mater 17:6514–6516. doi: 10.1021/cm052150k CrossRefGoogle Scholar
  39. Gibbs JW (1877) On the equilibrium of heterogeneous substances. Trans Connecticut Acad Arts Sci 3:343–524Google Scholar
  40. Gilman JJ (2009) Basalt columns: large scale constitutional supercooling? J Volcanol Geotherm Res 184:347–350. doi: 10.1016/j.jvolgeores.2009.04.017 CrossRefGoogle Scholar
  41. Gong YUT, Killian CE, Olson IC, Appathurai NP, Amasino AL, Martin MC, Holt LJ, Wilt FH, Gilbert PUPA (2012) Phase transitions in biogenic amorphous calcium carbonate. Proc Natl Acad Sci U S A 109:1–6. doi: 10.1073/pnas.1118085109 CrossRefGoogle Scholar
  42. Gower LA (1997) The influence of polyaspartate additive on the growth and morphology of calcium carbonate crystals. University of Massachusetts, AmherstGoogle Scholar
  43. Gower LB (2008) Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev 108:4551–4627. doi: 10.1021/cr800443h CrossRefGoogle Scholar
  44. Gower LB, Odom D (2000) Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J Cryst Growth 210:719–734. doi: 10.1016/S0022-0248(99)00749-6 CrossRefGoogle Scholar
  45. Gower LB, Tirrell DA (1998) Calcium carbonate films and helices grown in solutions of poly(aspartate). J Cryst Growth 191:153–160. doi: 10.1016/S0022-0248(98)00002-5 CrossRefGoogle Scholar
  46. Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41:441–501. doi: 10.1021/cr60130a002 CrossRefGoogle Scholar
  47. Haberkorn H, Franke D, Frechen T, Goesele W, Rieger J (2003) Early stages of particle formation in precipitation reactions—quinacridone and boehmite as generic examples. J Colloid Interface Sci 259:112–126. doi: 10.1016/S0021-9797(03)00024-9 CrossRefGoogle Scholar
  48. Habraken W, Tao J, Brylka LJ, Friedrich H, Bertinetti L, Schenk AS, Verch A, Dmitrovic V, Bomans PHH, Frederik PM, Laven J, van der Schoot P, Aichmayer B, de With G, De Yoreo JJ, Sommerdijk NAJM (2013) Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat Commun 4:1507. doi: 10.1038/ncomms2490 CrossRefGoogle Scholar
  49. Hardikar VV, Matijevic E (2001) Influence of ionic and nonionic dextrans on the formation of calcium hydroxide and calcium carbonate particles. Colloids Surf A Physicochem Eng Asp 186:23–31CrossRefGoogle Scholar
  50. Harris J, Mey I, Hajir M, Mondeshki M, Wolf SE (2015) Pseudomorphic transformation of amorphous calcium carbonate films follows spherulitic growth mechanisms and can give rise to crystal lattice tilting. CrystEngComm 17:6831–6837. doi: 10.1039/C5CE00441A CrossRefGoogle Scholar
  51. Henriksen K, Young J, Bown P, Stipp S (2004) Coccolith biomineralisation studied with atomic force microscopy. Palaeontol 47:725–743. doi: 10.1111/j.0031-0239.2004.00385.x CrossRefGoogle Scholar
  52. Homeijer SJ, Olszta MJ, Barrett RA, Gower LB (2008) Growth of nanofibrous barium carbonate on calcium carbonate seeds. J Cryst Growth 310:2938–2945. doi: 10.1016/j.jcrysgro.2008.02.009 CrossRefGoogle Scholar
  53. Homeijer SJ, Barrett RA, Gower LB (2010) Polymer-Induced Liquid-Precursor (PILP) process in the non-calcium based systems of barium and strontium carbonate. Cryst Growth Des 10:1040–1052. doi: 10.1021/cg800918g CrossRefGoogle Scholar
  54. Hovden R, Wolf SE, Holtz ME, Marin F, Muller DA, Estroff LA (2015) Nanoscale assembly processes revealed in the nacroprismatic transition zone of Pinna nobilis mollusc shells. Nat Commun. doi: 10.1038/ncomms10097 Google Scholar
  55. Ihli J, Wong WC, Noel EH, Kim Y-Y, Kulak AN, Christenson HK, Duer MJ, Meldrum FC (2014) Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nat Commun 5:3169. doi: 10.1038/ncomms4169 CrossRefGoogle Scholar
  56. Jacob DE, Wirth R, Soldati A, Wehrmeister U, Schreiber A (2011) Amorphous calcium carbonate in the shells of adult Unionoida. J Struct Biol 173:241–249. doi: 10.1016/j.jsb.2010.09.011 CrossRefGoogle Scholar
  57. Jee SS, Culver L, Li Y, Douglas EP, Gower LB (2010a) Biomimetic mineralization of collagen via an enzyme-aided PILP process. J Cryst Growth 312:1249–1256. doi: 10.1016/j.jcrysgro.2009.11.010 CrossRefGoogle Scholar
  58. Jee SS, Thula TT, Gower LB (2010b) Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: influence of polymer molecular weight. Acta Biomater 6:3676–3686. doi: 10.1016/j.actbio.2010.03.036 CrossRefGoogle Scholar
  59. Jee SS, Kasinath RK, DiMasi E, Kim Y-Y, Gower LB (2011) Oriented hydroxyapatite in turkey tendon mineralized via the polymer-induced liquid-precursor (PILP) process. CrystEngComm 13:2077. doi: 10.1039/c0ce00605j CrossRefGoogle Scholar
  60. Jiang Y, Gower LB, Volkmer D, Cölfen H (2011) Hierarchical DL-glutamic acid microspheres from polymer-induced liquid precursors. Cryst Growth Des 11:3243–3249. doi: 10.1021/cg200504n CrossRefGoogle Scholar
  61. Jiang Y, Gong H, Grzywa M, Volkmer D, Gower LB, Cölfen H (2013) Microdomain transformations in mosaic mesocrystal thin films. Adv Funct Mater 23:1547–1555. doi: 10.1002/adfm.201202294 CrossRefGoogle Scholar
  62. Kababya S, Gal A, Kahil K, Weiner S, Addadi L, Schmidt A (2015) Phosphate–water interplay tunes amorphous calcium carbonate metastability: spontaneous phase separation and crystallization vs stabilization viewed by solid state NMR. J Am Chem Soc 137:990–998. doi: 10.1021/ja511869g CrossRefGoogle Scholar
  63. Kellermeier M, Melero-García E, Glaab F, Klein R, Drechsler M, Rachel R, García-Ruiz JM, Kunz W (2010) Stabilization of amorphous calcium carbonate in inorganic silica-rich environments. J Am Chem Soc 132:17859–17866. doi: 10.1021/ja106959p CrossRefGoogle Scholar
  64. Kellermeier M, Rosenberg R, Moise A, Anders U, Przybylski M, Cölfen H (2012) Amino acids form prenucleation clusters: ESI-MS as a fast detection method in comparison to analytical ultracentrifugation. Faraday Discuss 159:23. doi: 10.1039/c2fd20060k CrossRefGoogle Scholar
  65. Killian CE, Metzler R, Gong YUT, Olson IC, Aizenberg J, Politi Y, Wilt FH, Scholl A, Young A, Doran A, Kunz M, Tamura N, Coppersmith SN, Gilbert PUPA (2009) Mechanism of calcite co-orientation in the sea urchin tooth. J Am Chem Soc 131:18404–18409. doi: 10.1021/ja907063z CrossRefGoogle Scholar
  66. Kim Y-Y, Douglas EP, Gower LB (2007) Patterning inorganic CaCO3 thin films via a polymer-induced liquid-precursor process. Langmuir 23:4862–4870CrossRefGoogle Scholar
  67. Kim Y-Y, Kulak A, Li Y, Batten T, Kuball M, Armes SP, Meldrum FC (2009) Substrate-directed formation of calcium carbonate fibres. J Mater Chem 19:387. doi: 10.1039/b813101e CrossRefGoogle Scholar
  68. Kim Y-Y, Hetherington NBJ, Noel EH, Kröger R, Charnock JM, Christenson HK, Meldrum FC (2011) Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate. Angew Chem Int Ed 50:12572–12577. doi: 10.1002/anie.201104407 CrossRefGoogle Scholar
  69. Lagaly G, Schulz O, Ziemehl R (1997) Dispersionen und Emulsionen. Steinkopff, DarmstadtCrossRefGoogle Scholar
  70. LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854CrossRefGoogle Scholar
  71. Leupold S, Wolf SE (2015) Unpublished Results.Google Scholar
  72. Levi-Kalisman Y, Raz S, Weiner S, Addadi L, Sagi I (2002) Structural differences between biogenic amorphous calcium carbonate phases using X-ray absorption spectroscopy. Adv Funct Mater 12:43CrossRefGoogle Scholar
  73. Li H, Xin HL, Kunitake ME, Keene EC, Muller DA, Estroff LA, Muller A (2011) Calcite prisms from mollusk shells (Atrina rigida): swiss-cheese-like organic-inorganic single-crystal composites. Adv Funct Mater 21:2028–2034. doi: 10.1002/adfm.201002709 CrossRefGoogle Scholar
  74. Loges N, Graf K, Nasdala L, Tremel W (2006) Probing cooperative interactions of tailor-made nucleation surfaces and macromolecules: a bioinspired route to hollow micrometer-sized calcium carbonate particles. Langmuir 22:3073–3080. doi: 10.1021/la0528596 CrossRefGoogle Scholar
  75. Loste E, Wilson RM, Seshadri R, Meldrum FC (2003) The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies. J Cryst Growth 254:206–218. doi: 10.1016/S0022-0248(03)01153-9 CrossRefGoogle Scholar
  76. Lutsko JF (2017) Novel paradigms in non-classical nucleation theory. In: Benning LG, Gebauer D, Kellermeier M, Van Driessche AES (ed) New perspectives on mineral nucleation and growth. Springer, Cham, pp 25–42Google Scholar
  77. Ma Y, Mehltretter G, Plüg C, Rademacher N, Schmidt MU, Cölfen H (2009) PY181 pigment microspheres of nanoplates synthesized via polymer-induced liquid precursors. Adv Funct Mater 19:2095–2101. doi: 10.1002/adfm.200900316 CrossRefGoogle Scholar
  78. Mutvei H (1978) Ultrastructural characteristics of the nacre in some gastropods. Zool Scr 7:287–296CrossRefGoogle Scholar
  79. Navrotsky A (2004) Energetic clues to pathways to biomineralization: precursors, clusters, and nanoparticles. Proc Natl Acad Sci U S A 101:12096–12101. doi: 10.1073/pnas.0404778101 CrossRefGoogle Scholar
  80. Nielsen MH, Aloni S, De Yoreo JJ (2014) In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345:1158–1162. doi: 10.1126/science.1254051Google Scholar
  81. Nudelman F, Pieterse K, George A, Bomans PHH, Friedrich H, Brylka LJ, Hilbers PAJ, De With G, Sommerdijk NAJM (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9:9–14. doi: 10.1038/NMAT2875 CrossRefGoogle Scholar
  82. Olszta MJ, Douglas EP, Gower LB (2003a) Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process. Calcif Tissue Int 72:583–591. doi: 10.1007/s00223-002-1032-7 CrossRefGoogle Scholar
  83. Olszta MJ, Odom D, Douglas EP, Gower LB (2003b) A new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor. Connect Tissue Res 44:326–334. doi: 10.1080/03008200390181852 CrossRefGoogle Scholar
  84. Olszta MJ, Gajjeraman S, Kaufman M, Gower LB (2004) Nanofibrous calcite synthesized via a solution-precursor-solid mechanism. Chem Mater 16:2355–2362. doi: 10.1021/cm035161r CrossRefGoogle Scholar
  85. Olszta MJ, Cheng X, Jee SS, Kumar R, Kim Y-Y, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: a new perspective. Mater Sci Eng R 58:77–116. doi: 10.1016/j.mser.2007.05.001 CrossRefGoogle Scholar
  86. Penn RL, Li D, Soltis JA (2017) A perspective on the particle-based crystal growth of ferric oxides, oxyhydroxides, and hydrous oxides. In: Benning LG, Gebauer D, Kellermeier M, Van Driessche AES (ed) New perspectives on mineral nucleation and growth. Springer, ChamGoogle Scholar
  87. Petsev DN, Chen K, Gliko O, Vekilov PG (2003) Diffusion-limited kinetics of the solution-solid phase transition of molecular substances. Proc Natl Acad Sci U S A 100:792–796. doi: 10.1073/pnas.0333065100 CrossRefGoogle Scholar
  88. Pipich V, Balz M, Wolf SE, Tremel W, Schwahn D (2008) Nucleation and growth of CaCO3 mediated by the Egg-white protein ovalbumin: a time-resolved in situ study using small-angle neutron scattering. J Am Chem Soc 130:6879–6892. doi: 10.1021/ja801798h CrossRefGoogle Scholar
  89. Politi Y, Arad T, Klein E, Weiner S, Addadi L (2004) Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306:1161–1164. doi:  10.1126/science.1102289
  90. Politi Y, Levi-Kalisman Y, Raz S, Wilt FH, Addadi L, Weiner S, Sagi I (2006) Structural characterization of the transient amorphous calcium carbonate precursor phase in sea urchin embryos. Adv Funct Mater 16:1289–1298. doi: 10.1002/adfm.200600134 CrossRefGoogle Scholar
  91. Politi Y, Metzler RA, Abrecht M, Gilbert B, Wilt FH, Sagi I, Addadi L, Weiner S, Gilbert PUPA (2008) Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proc Nat Acad Sci USA 105:17362–17366. doi: 10.1073/pnas.0806604105 CrossRefGoogle Scholar
  92. Pontoni D, Bolze J, Dingenouts N, Narayanan T, Ballauff M (2003) Crystallization of calcium carbonate observed in-situ by combined small- and wide-angle X-ray scattering. J Phys Chem B 107:5123–5125. doi: 10.1021/jp0343640 CrossRefGoogle Scholar
  93. Pontoni D, Bolze J, Ballauff M, Narayanan T, Cölfen H (2004) Time-resolved SAXS study of the effect of a double hydrophilic block-copolymer on the formation of CaCO3 from a supersaturated salt solution. J Colloid Interface Sci 277:84–94. doi: 10.1016/j.jcis.2004.04.029 CrossRefGoogle Scholar
  94. Rao A, Cölfen H (2017) Mineralization schemes in the living world: mesocrystals. In: Benning LG, Gebauer D, Kellermeier M, Van Driessche AES (ed) New perspectives on mineral nucleation and growth. Springer, ChamGoogle Scholar
  95. Rieger J, Frechen T, Cox G, Heckmann W, Schmidt C, Thieme J (2007) Precursor structures in the crystallization/precipitation processes of CaCO3 and control of particle formation by polyelectrolytes. Faraday Discuss 136:265. doi: 10.1039/b701450c CrossRefGoogle Scholar
  96. Rodriguez DE, Thula-Mata T, Toro EJ, Yeh Y-W, Holt C, Holliday LS, Gower LB (2014) Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts. Acta Biomater 10:494–507. doi: 10.1016/j.actbio.2013.10.010 CrossRefGoogle Scholar
  97. Rousseau M, Lopez E, Stempflé P, Brendlé M, Franke L, Guette A, Naslain R, Bourrat X (2005) Multiscale structure of sheet nacre. Biomaterials 26:6254–6262. doi: 10.1016/j.biomaterials.2005.03.028 CrossRefGoogle Scholar
  98. Schenk AS, Zope H, Kim Y-Y, Kros A, Sommerdijk NAJM, Meldrum FC (2012) Polymer-induced liquid precursor (PILP) phases of calcium carbonate formed in the presence of synthetic acidic polypeptides—relevance to biomineralization. Faraday Discuss 159:327. doi: 10.1039/c2fd20063e CrossRefGoogle Scholar
  99. Schenk AS, Cantaert B, Kim Y-Y, Li Y, Read ES, Semsarilar M, Armes SP, Meldrum FC (2014) Systematic study of the effects of polyamines on calcium carbonate precipitation. Chem Mater 26:2703–2711. doi: 10.1021/cm500523w CrossRefGoogle Scholar
  100. Sethmann I (2005) Observation of nano-clustered calcite growth via a transient phase mediated by organic polyanions: a close match for biomineralization. Am Mineral 90:1213–1217. doi: 10.2138/am.2005.1833 CrossRefGoogle Scholar
  101. Seto J, Ma Y, Davis SA, Meldrum FC, Gourrier A, Kim Y-Y, Schilde U, Sztucki M, Burghammer M, Maltsev S, Jäger C, Cölfen H (2011) Structure-property relationships of a biological mesocrystal in the adult sea urchin spine. Proc Natl Acad Sci U S A 109:1–6. doi: 10.1073/pnas.1109243109 Google Scholar
  102. Shen Q, Wei H, Zhou Y, Huang Y, Yang H, Wang D, Xu D (2006) Properties of amorphous calcium carbonate and the template action of vaterite spheres. J Phys Chem B 110:2994–3000. doi: 10.1021/jp055063o CrossRefGoogle Scholar
  103. Somasundaran P (ed) (2006) Encyclopedia of surface and colloid science, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  104. Sommerdijk NAJM, van Leeuwen ENM, Vos MRJ, Jansen JA (2007) Calcium carbonate thin films as biomaterial coatings using DNA as crystallization inhibitor. CrystEngComm 9:1209. doi: 10.1039/b710277a CrossRefGoogle Scholar
  105. Sugawara A, Nishimura T, Yamamoto Y, Inoue H, Nagasawa H, Kato T (2006) Self-organization of oriented calcium carbonate/polymer composites: effects of a matrix peptide isolated from the exoskeleton of a crayfish. Angew Chem Int Ed 45:2876–2879. doi: 10.1002/anie.200503800 CrossRefGoogle Scholar
  106. Tadros T (ed) (2013) Encyclopedia of colloid and interface science. Springer Verlag, HeidelbergGoogle Scholar
  107. Tobler DJ, Rodriguez-Blanco JD, Dideriksen K, Bovet N, Sand KK, Stipp SLS (2015) Citrate effects on Amorphous Calcium Carbonate (ACC) structure, stability, and crystallization. Adv Funct Mater 25:3081–3090. doi: 10.1002/adfm.201500400 CrossRefGoogle Scholar
  108. Toramaru A, Matsumoto T (2004) Columnar joint morphology and cooling rate : a starch-water mixture experiment. 109:1–10. doi:  10.1029/2003JB002686
  109. Traube J (1925) Gummi Ztg 39:434Google Scholar
  110. Vekilov PG (2010) Nucleation. Cryst Growth Des 10:5007–5019. doi: 10.1021/cg1011633 CrossRefGoogle Scholar
  111. Vekilov PG (2012) Crystal nucleation: nucleus in a droplet. Nat Mater 11:838–840. doi: 10.1038/nmat3441 CrossRefGoogle Scholar
  112. Volkmer D, Harms M, Gower LB, Ziegler A (2005) Morphosynthesis of nacre-type laminated CaCO3 thin films and coatings. Angew Chem Int Ed 44:639–644. doi: 10.1002/anie.200461386 CrossRefGoogle Scholar
  113. Wallace AF, Hedges LO, Fernandez-Martinez A, Raiteri P, Gale JD, Waychunas GA, Whitelam S, Banfield JF, De Yoreo JJ (2013) Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science 341:885–889. doi:  10.1126/science.1230915
  114. Weiss IM, Tuross N, Addadi L, Weiner S (2002) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool 293:478–491CrossRefGoogle Scholar
  115. Wohlrab S, Cölfen H, Antonietti M (2005) Crystalline, porous microspheres made from amino acids by using polymer-induced liquid precursor phases. Angew Chem Int Ed 44:4087–4092. doi: 10.1002/anie.200462467 CrossRefGoogle Scholar
  116. Wolf SE, Leiterer J, Kappl M, Emmerling F, Tremel W (2008) Early homogenous amorphous precursor stages of calcium carbonate and subsequent crystal growth in levitated droplets. J Am Chem Soc 130:12342–12347. doi: 10.1021/ja800984y CrossRefGoogle Scholar
  117. Wolf SE, Leiterer J, Pipich V, Barrea R, Emmerling F, Tremel W (2011a) Strong stabilization of amorphous calcium carbonate emulsion by ovalbumin: gaining insight into the mechanism of “polymer-induced liquid precursor” processes. J Am Chem Soc 133:12642–12649. doi: 10.1021/ja202622g CrossRefGoogle Scholar
  118. Wolf SE, Müller L, Barrea R, Kampf CJ, Leiterer J, Panne U, Hoffmann T, Emmerling F, Tremel W (2011b) Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates. Nanoscale 3:1158–1165. doi: 10.1039/c0nr00761g CrossRefGoogle Scholar
  119. Wolf SE, Lieberwirth I, Natalio F, Bardeau J-F, Delorme N, Emmerling F, Barrea R, Kappl M, Marin F (2012) Merging models of biomineralisation with concepts of nonclassical crystallisation: is a liquid amorphous precursor involved in the formation of the prismatic layer of the Mediterranean Fan Mussel Pinna nobilis? Faraday Discuss 159:433–448. doi: 10.1039/b000000x CrossRefGoogle Scholar
  120. Wolf SE, Böhm C, Harris J, Hajir M, Mondeshki M, Marin F (2015) Single nanogranules preserve intracrystalline amorphicity in biominerals. Key Eng Mater 672:47–59. doi: 10.4028/ CrossRefGoogle Scholar
  121. Wolf SE, Böhm CF, Harris J, Demmert B, Jacob DE, Mondeshki M, Ruiz-Agudo E, Navarro CR (2016) Nonclassical crystallization in vivo et in vitro (I): process-structure-property relationships of nanogranular biominerals. J Struct Biol. doi: 10.1016/j.jsb.2016.07.016 Google Scholar
  122. Yang H, ter Horst JH (2017) Crystal nucleation of small organic molecules. In: Benning LG, Gebauer D, Kellermeier M, Van Driessche AES (ed) New perspectives on mineral nucleation and growth. Springer, ChamGoogle Scholar
  123. Yang L, Killian CE, Kunz M, Tamura N, Gilbert PUPA (2011) Biomineral nanoparticles are space-filling. Nanoscale 3:603–609. doi: 10.1039/c0nr00697a CrossRefGoogle Scholar
  124. Zhang TH, Liu XY (2007) How does a transient amorphous precursor template crystallization. J Am Chem Soc 129:13520–13526CrossRefGoogle Scholar
  125. Zhong C, Chu CC (2009) Acid polysaccharide-induced Amorphous Calcium Carbonate (ACC) films: colloidal nanoparticle self-organization process. Langmuir 25:3045–3049. doi: 10.1021/la803541m CrossRefGoogle Scholar
  126. Zhu J-H, Yu S-H, Xu A-W, Cölfen H (2009) The biomimetic mineralization of double-stranded and cylindrical helical BaCO(3) nanofibres. Chem Commun 1106–1168Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute for Glass and Ceramics, Department of Materials Science and EngineeringFriedrich-Alexander University Erlangen-Nürnberg (FAU)ErlangenGermany
  2. 2.Interdisciplinary Center for Functional Particle Systems (FPS)Friedrich-Alexander University Erlangen-Nürnberg (FAU)ErlangenGermany
  3. 3.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations