Advertisement

Unified Stabilized Formulation for Quasi-incompressible Materials

  • Alessandro FranciEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter is devoted to the derivation and validation of the unified stabilized formulation for nearly-incompressible materials. Namely, the cases of quasi-incompressible Newtonian fluids and quasi-incompressible hypoelastic solids will be analyzed.

References

  1. 1.
    F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrange multipliers. Revue française d’automatique, informatique, recherche opérationnelle. Série rouge. Analyse numérique, 8(R-2):129–151, 1974.Google Scholar
  2. 2.
    F. Felippa and E. Oñate. Nodally exact ritz discretizations of 1d diffusion-absorption and helmholtz equations by variational fic and modified equation methods. Computational Mechanics, 39:91–111, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    E. Oñate. Derivation of stabilized equations for advective-diffusive transport and fluid flow problems. Computer methods in applied mechanics and engineering, 151:233–267, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    E. Oñate, J. Rojek, R.L. Taylor, and O.C. Zienkiewicz. Finite calculus formulation for incompressble solids using linear triangles and tetrahedra. International Journal For Numerical Methods In Engineering, 59:1473–1500, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    E. Oñate, A. Valls, and J. García. Fic/fem formulation with matrix stabilizing terms for incompressible flows at low and high reynold’s numbers. Computational mechanics, 38 (4–5):440–455, 2006.Google Scholar
  6. 6.
    E. Oñate, A. Valls, and J.García. Computation of turbulent flows using a finite calculus-finite element formulation. International Journal of Numerical Methods in Engineering, 54:609–637, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    E. Oñate, P. Nadukandi, S.R. Idelsohn, J. García, and C. Felippa. A family of residual-based stabilized finite element methods for stokes flows. International Journal for Numerical Methods in Fluids, 65 (1–3):106–134, 2011.Google Scholar
  8. 8.
    E. Oñate, Idelsohn SR, and Felippa C. Consistent pressure laplacian stabilization for incompressible continua via higher-order finite calculus. International Journal of Numerical Methods in Engineering, 87 (1–5):171–195, 2011.Google Scholar
  9. 9.
    E. Oñate, A. Franci, and J.M. Carbonell. Lagrangian formulation for finite element analysis of quasi-incompressible fluids with reduced mass losses. International Journal for Numerical Methods in Fluids, 74 (10):699–731, 2014.MathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Oñate, S.R. Idelsohn, F. Del Pin, and R. Aubry. The particle finite element method. an overview. International Journal for Computational Methods, 1:267–307, 2004.zbMATHGoogle Scholar
  11. 11.
    H. Edelsbrunner and E.P. Mucke. Three dimensional alpha shapes. ACM Trans Graphics, 13:43–72, 1999.CrossRefzbMATHGoogle Scholar
  12. 12.
    T. Belytschko, W.K. Liu, B. Moran, and K.I. Elkhodadry. Nonlinear Finite Elements For Continua And Structures. Second Edition. John Wiley & Sons, New York, 2014.Google Scholar
  13. 13.
    J. Donea and A. Huerta. Finite Element Methods for Flow Problems. Wiley, 2003.Google Scholar
  14. 14.
    O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method for Solid and Structural Mechanics,Volume 2 (6th Ed.). Elsiever Butterworth-Heinemann, Oxford, 2005.Google Scholar
  15. 15.
    O.C. Zienkiewicz, R.L. Taylor, and P. Nithiarasu. The Finite Element Method for Fluid Dynamics,Volume 3 (6th Ed.). Elsiever, Oxford, 2005.Google Scholar
  16. 16.
    S.R. Idelsohn and E. Oñate. The challenge of mass conservation in the solution of free surface flows with the fractional step method. problems and solutions. Communications in Numerical Methods in Engineering, 26 (10):1313–1330, 2008.Google Scholar
  17. 17.
    S.R. Idelsohn, M.Mier-Torrecilla, and E. Oñate. Multi-fluid flows with the particle finite element method. Computer methods in applied mechanics and engineering, 198:2750–2767, 2009.CrossRefzbMATHGoogle Scholar
  18. 18.
    A. Limache, S.R. Idelsohn, R. Rossi, and E. Oñate. The violation of objectivity in laplace formulation of the navier-stokes equations. International Journal for Numerical Methods in Fluids, 54:639–664, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    E. Turkel. Preconditioned methods for solving the incompressible and low speed compressible equations. Journal of Computational Physics, 72:277–298, 1987.CrossRefzbMATHGoogle Scholar
  20. 20.
    A.J. Chorin. A numerical method for solving incompressible viscous flow problems. Journal of Computational Physics, 135:118–125, 1997.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    S.R. Idelsohn, J. Marti, A. Limache, and E. Oñate. Unified lagrangian formulation for elastic solids and incompressible fluids: Applications to fluid-structure interaction problems via the pfem. Computer Methods In Applied Mechanics And Engineering, 197:1762–1776, 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    E. Oñate and J. García. A finite element method for fluid-structure interaction with surface waves using a finite calculus formulation. Computer methods in applied mechanics and engineering, 191:635–660, 2001.CrossRefzbMATHGoogle Scholar
  23. 23.
    E. Oñate. Possibilities of finite calculus in computational mechanics. International Journal of Numerical Methods in Engineering, 60 (1):255–281, 2004.Google Scholar
  24. 24.
    E. Oñate. A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Computer Methods in Applied Mechanics and Engineering, 190 (20–21):355–370, 2000.Google Scholar
  25. 25.
    E. Oñate, M.A. Celigueta, S.R. Idelsohn, F. Salazar, and B. Suarez. Possibilities of the particle finite element method for fluid–soil–structure interaction problems. Computation mechanics, 48:307–318, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    E. Oñate, A. Franci, and J.M. Carbonell. A particle finite element method for analysis of industrial forming processes. Computational Mechanics, 54:85–107, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    E. Oñate, M.A. Celigueta, and S.R. Idelsohn. Modeling bed erosion in free surface flows by th particle finite element method. Acta Geotechnia, 1 (4):237–252, 2006.CrossRefGoogle Scholar
  28. 28.
    E. Oñate and J.M. Carbonell. Updated lagrangian finite element formulation forquasi and fully incompressible fuids. Computational Mechanics, 54 (6), 2014.Google Scholar
  29. 29.
    E. Oñate, A. Franci, and J.M. Carbonell. A particle finite element method (pfem)for coupled thermal analysis of quasi and fully incompressible flows and fluid structure interaction problems. Numerical Simulations of Coupled Problems in Engineering. S.R. Idelsohn (Ed.), 33:129–156, 2014.Google Scholar
  30. 30.
    E. Oñate, J. García, S.R. Idelsohn, and F. Del Pin. Fic formulations for finite element analysis of incompressible flows. eulerian, ale and lagrangian approaches. Computer methods in applied mechanics and engineering, 195 (23–24):3001–3037, 2006.Google Scholar
  31. 31.
    P. Ryzhakov, E. Oñate, and S.R. Idelsohn. Improving mass conservation in simulation of incompressible flows. International Journal of Numerical Methods in Engineering, 90:1435–1451, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    E. Oñate, P. Nadukandi, and S. Idelsohn. P1/p0+ elements for incompressible flows with discontinuous material properties. Computer Methods in Applied Mechanics and Engineering, 271:185–209, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    A. Franci, E. Oñate, and J.M. Carbonell. On the effect of the bulk tangent matrix in partitioned solution schemes for nearly incompressible fluids. International Journal for Numerical Methods in Engineering, 102:257–277, 2015.MathSciNetCrossRefGoogle Scholar
  34. 34.
    PFEM in CIMNE website. www.cimne.com/pfem.
  35. 35.
    S.R. Idelsohn, E. Oñate, and F. Del Pin. The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. International Journal for Numerical Methods in Engineering, 61:964–989, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    A. Larese, R. Rossi, E. Oñate, and S.R. Idelsohn. Validation of the particle finite element method (pfem) for simulation of free surface flows. International Journal for Computer-Aided Engineering and Software, 25:385–425, 2008.CrossRefzbMATHGoogle Scholar
  37. 37.
    S. Idelsohn, N. Calvo, and E. Oñate. Polyhedrization of an arbitrary point set. Computer Methods in Applied Mechanics and Engineering, 92 (22–24):2649–2668, 2003.CrossRefzbMATHGoogle Scholar
  38. 38.
    A. Saalfeld. In Delaunay edge refinements, pages 33–36, Burnaby, 1991.Google Scholar
  39. 39.
    H. Edelsbrunner and T.S. Tan. An upper bound for conforming delaunay triangulations. Discrete and Computational Geometry, 10 (2):197–213, 1993.Google Scholar
  40. 40.
    D. Cohen-Steiner, E. Colin de Verdiere, and M. Yvinec. Conforming delaunay triangulations in 3d. Special issue on the 18th annual symposium on computational Geometry, 28 (2–3):217–233, 2004.Google Scholar
  41. 41.
    X. Zhang, K. Krabbenhoft, D.M. Pedroso, A.V. Lyamin, D. Sheng, M. Vicente da Silva, and D. Wang. Particle finite element analysis of large deformation and granular flow problems. Computer and Geotechnics, 54:133–142, 2013.CrossRefGoogle Scholar
  42. 42.
    E. Oñate, S.R. Idelsohn, M.A. Celigueta, and R. Rossi. Advances in the particle finite element method for the analysis of fluid–multibody interaction and bed erosion in free surface flows. Computer methods in applied mechanics and engineering, 197 (19–20):1777–1800, 2008.Google Scholar
  43. 43.
    D. Mavriplis. Advancing front delaunay triangulation algorithm designed for robustness. Journal of Computational Physics, 117:90–101, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    J.M. Carbonell, E. Oñate, and B. Suarez. Modeling of ground excavation with the particle finite-element method. Journal of Engineering Mechanics, 136:455–463, 2010.CrossRefGoogle Scholar
  45. 45.
    J.M. Carbonell, E. Oñate, and B. Suarez. Modelling of tunnelling processes and cutting tool wear with the particle finite element method (pfem). Computational Mechanics, 52 (3):607–629, 2013.CrossRefzbMATHGoogle Scholar
  46. 46.
    E. Oñate, R. Rossi, S.R. Idelsohn, and K. Butler. Melting and spread of polymers in fire with the particle finite element method. International Journal of Numerical Methods in Engineering, 81 (8):1046–1072, 2010.zbMATHGoogle Scholar
  47. 47.
    X. Oliver, J.C. Cante, R. Weyler, C. González, and J. Hernández. Particle finite element methods in solid mechanics problems. In: Oñate E, Owen R (Eds) Computational Plasticity. Springer, Berlin, 2007.Google Scholar
  48. 48.
    J.M. Carbonell. Doctoral thesis: Modeling of Ground Excavation with the Particle Finite Element Method. 2009.Google Scholar
  49. 49.
    M. Cremonesi and U. Perego. Numerical simulation of landslide-reservoir interaction using a pfem approach. In Proceedings of Particle-Based Methods III. Fundamentals and Applications, pages 408–417, Stuttgardt, 2013.Google Scholar
  50. 50.
    M. Cremonesi, F. Ferri, and U. Perego. A lagrangian finite element approach for the numerical simulation of landslide runouts. In XX Italian Conference on Computational Mechanics, VII Italian Meeting of AIMETA Material Group, Ed. by Sacco and S. Marfia, pages 1–2, Cassino, 2014.Google Scholar
  51. 51.
    E. Oñate, J. Rojek, S.R. Idelsohn, F. Del Pin, and R. Aubry. Advances in syabilized finite element and particle methods for bulk forming processes. Computer methods in applied mechanics and engineering, 195:6750–6777, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    E. Oñate, J. Marti, R. Rossi, and S.R. Idelsohn. Analysis of the melting, burning and flame spread of polymers with the particle finite element method. Computer Assisted Methods in Engineering and Science, 20:165–184, 2013.MathSciNetGoogle Scholar
  53. 53.
    P. Ryzhakov, J. Cotela, R. Rossi, and E. Oñate. A two-step monolithic method for the efficient simulation of incompressible flows. International Journal for Numerical Methods in Fluids, 74 (12):919–934, 2014.MathSciNetCrossRefGoogle Scholar
  54. 54.
    P. Ryzhakov, R. Rossi, S.R. Idelsohn, and E. Oñate. A monolithic lagrangian approach for fluid-structure interaction problems. Computational Mechanics, 46:883–899, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    K.J. Bathe. Finite Element Procedures. Prentice-Hall, New Jersey, 1996.zbMATHGoogle Scholar
  56. 56.
    B. Hubner, E. Walhorn, and D.Dinkler. A monolithic approach to fluid-structure interaction using space-time finite elements. Computer Methods in Applied Mechanics and Engineering, 193:2087–2104, 2004.CrossRefzbMATHGoogle Scholar
  57. 57.
    D.M. Greaves. Simulation of viscous water column collapse using adapting hierarchical grids. International Journal of Numerical Methods in Engineering, 50:693–711, 2006.CrossRefzbMATHGoogle Scholar
  58. 58.
    J.C. Martin and W.J. Moyce. Part iv. an experimental study of the collapse of liquid columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 244 (882):312–324, 1952.Google Scholar
  59. 59.
    I. Romero and M. Bishoff. Incompatible bubbles: A non-conforming finite element formulation for linear elasticity. Computer Methods In Applied Mechanics And Engineering, 196:1662–1672, 2006.MathSciNetCrossRefGoogle Scholar
  60. 60.
    J.C. Simo and M.S. Rifai. A class of mixed assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 29(8):1595–1638, 1990.MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    M. Bishoff and I. Romero. A generalization of the method of incompatible modes. International Journal for Numerical Methods in Engineering, 69 (9):1851–1868, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    A. Franci, E. Oñate, and J. M. Carbonell. Velocity-based formulations for standard and quasi-incompressible hypoelastic-plastic solids. International Journal for Numerical Methods in Engineering, doi: 10.1002/nme.5205, 2016.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Universitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.CIMNEBarcelonaSpain

Personalised recommendations