An Equivalent Definition of Pan-Integral

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9880)

Abstract

In this note, we introduce the concepts of support disjointness super-\(\oplus \)-additivity and positively super-\(\otimes \)-homogeneity of a functional (with respect to pan-addition \(\oplus \) and pan-multiplication \(\otimes \), respectively). By means of these two properties of functionals, we discuss the characteristics of pan-integrals and present an equivalent definition of the pan-integral. As special cases, we obtain the equivalent definitions of the Shilkret integral, the \(+,\cdot \)-based pan-integral, and the Sugeno integral.

Keywords

Pan-integral Sugeno integral Shilkret integral Support disjointness super-\(\oplus \)-additivity Positively super-\(\otimes \)-homogeneity 

References

  1. 1.
    Benvenuti, P., Mesiar, R., Vivona, D.: Monotone set functions-based integrals. In: Pap, E. (ed.) Handbook of Measure Theory, vol. II, pp. 1329–1379. Elsevier, Amsterdam (2002)CrossRefGoogle Scholar
  2. 2.
    Benvenuti, P., Mesiar, R.: Pseudo-arithmetical operations as a basis for the general measure and integration theory. Inf. Sci. 160, 1–11 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1954)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Grabisch, M., Murofushi, T., Sugeno, M. (eds.): Fuzzy Measures and Integrals: Theory and Applications. Studies in Fuzziness Soft Computing, vol. 40. Physica, Heidelberg (2000)MATHGoogle Scholar
  5. 5.
    Ichihashi, H., Tanaka, M., Asai, K.: Fuzzy integrals based on pseudo-additions and multiplications. J. Math. Anal. Appl. 130, 354–364 (1988)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Lehrer, E.: A new integral for capacities. Econ. Theor. 39, 157–176 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Lehrer, E., Teper, R.: The concave integral over large spaces. Fuzzy Sets Syst. 159, 2130–2144 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Mesiar, R.: Choquet-like integrals. J. Math. Anal. Appl. 194, 477–488 (1995)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Mesiar, R., Rybárik, J.: Pan-operaions structure. Fuzzy Sets Syst. 74, 365–369 (1995)CrossRefMATHGoogle Scholar
  10. 10.
    Pap, E.: Null-Additive Set Functions. Kluwer, Dordrecht (1995)MATHGoogle Scholar
  11. 11.
    Shilkret, N.: Maxitive measure and integration. Indag. Math. 33, 109–116 (1971)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D. dissertation, Takyo Institute of Technology (1974)Google Scholar
  13. 13.
    Sugeno, M., Murofushi, T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122, 197–222 (1987)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Teper, R.: On the continuity of the concave integral. Fuzzy Sets Syst. 160, 1318–1326 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Tong, X., Chen, M., Li, H.X.: Pan-operations structure with non-idempotent pan-addition. Fuzzy Sets Syst. 145, 463–470 (2004)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Wang, Z., Klir, G.J.: Generalized Measure Theory. Springer, Berlin (2009)CrossRefMATHGoogle Scholar
  17. 17.
    Yang, Q.: The pan-integral on fuzzy measure space. Fuzzy Math. 3, 107–114 (1985). (in Chinese)MathSciNetMATHGoogle Scholar
  18. 18.
    Zhang, Q., Mesiar, R., Li, J., Struk, P.: Generalized Lebesgue integral. Int. J. Approx. Reason. 52, 427–443 (2011)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of ScienceHuzhou UniversityHuzhouChina
  2. 2.School of SciencesCommunication University of ChinaBeijingChina

Personalised recommendations