Weighted Quasi-Arithmetic Means on Two-Dimensional Regions: An Independent Case

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9880)

Abstract

Weighted quasi-arithmetic means on two-dimensional regions when weighting functions are independent and utility functions have independent forms are introduced, and some conditions on weighting functions are discussed to characterize the properties. The first-order stochastic dominance and risk premiums on two-dimensional regions are demonstrated. Several examples of two-dimensional utility functions are given by one-dimensional utility functions to explain main results.

References

  1. 1.
    Aczél, J.: On weighted mean values. Bull. Am. Math. Soc. 54, 392–400 (1948)CrossRefMATHGoogle Scholar
  2. 2.
    Bustince, H., Calvo, T., Baets, B., Fodor, J., Mesiar, R., Montero, J., Paternain, D., Pradera, A.: A class of aggregation functions encompassing two-dimensional OWA operators. Inf. Sci. 180, 1977–1989 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Eeckhoudt, L., Gollier, G., Schkesinger, H.: Economic and Financial Decisions under Risk. Princeton University Press, Princeton (2005)Google Scholar
  4. 4.
    Fishburn, P.C.: Utility Theory for Decision Making. Wiley, New York (1970)MATHGoogle Scholar
  5. 5.
    Labreuche, C., Grabisch, M.: The Choquet integral for the aggregation of interval scales in multicriteria decision making. Fuzzy Sets Syst. 137, 11–26 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Kolmogoroff, A.N.: Sur la notion de la moyenne. Acad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. 12, 388–391 (1930)MATHGoogle Scholar
  7. 7.
    Nagumo, K.: Über eine Klasse der Mittelwerte. Japan. J. Math. 6, 71–79 (1930)MATHGoogle Scholar
  8. 8.
    Torra, V., Godo, L.: On defuzzification with continuous WOWA operators. In: Calvo, P.T., Mayor, P.G., Mesiar, P.R. (eds.) Aggregation Operators. STUDFUZZ, vol. 97, pp. 159–176. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Yoshida, Y.: Aggregated mean ratios of an interval induced from aggregation operations. In: Torra, V., Narukawa, Y. (eds.) MDAI 2008. LNCS (LNAI), vol. 5285, pp. 26–37. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Yoshida, Y.: Quasi-arithmetic means and ratios of an interval induced from weighted aggregation operations. Soft Comput. 14, 473–485 (2010)CrossRefMATHGoogle Scholar
  11. 11.
    Yoshida, Y.: Weighted quasi-arithmetic means and conditional expectations. In: Torra, V., Narukawa, Y., Daumas, M. (eds.) MDAI 2010. LNCS, vol. 6408, pp. 31–42. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Yoshida, Y.: Weighted quasi-arithmetic means and a risk index for stochastic environments, International Journal of Uncertainty. Fuzziness Knowl.-Based Syst. (IJUFKS) 16, 1–16 (2011)CrossRefMATHGoogle Scholar
  13. 13.
    Yoshida, Y.: Weighted quasi-arithmetic mean on two-dimensional regions and their applications. In: Torra, V., Narukawa, T. (eds.) MDAI 2015. LNCS, vol. 9321, pp. 42–53. Springer, Heidelberg (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Economics and Business AdministrationUniversity of KitakyushuKitakyushuJapan

Personalised recommendations