Privacy in Bitcoin Transactions: New Challenges from Blockchain Scalability Solutions

  • Jordi Herrera-Joancomartí
  • Cristina Pérez-Solà
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9880)

Abstract

Bitcoin has emerged as the most successful cryptocurrency since its appearance back in 2009. However, its main drawback to become a truly global payment system is its low capacity in transaction throughput. At present time, some ideas have been proposed to increase the transaction throughput, with different impact on the scalability of the system. Some of these ideas propose to decouple standard transactions from the blockchain core and to manage them through a parallel payment network, relegating the usage of the bitcoin blockchain only to transactions which consolidate multiple of those off-chain movements. Such mechanisms generate new actors in the bitcoin payment scenario, the Payment Service Providers, and new privacy issues arise regarding bitcoin users. In this paper, we provide a comprehensive description of the most relevant scalability solutions proposed for the bitcoin network and we outline its impact on users’ privacy based on the early stage proposals published so far.

Keywords

Bitcoin Scalability Off-chain transactions Lightning network Duplex micropayment channels 

References

  1. 1.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)Google Scholar
  2. 2.
    Antonopoulos, A.M.: Mastering Bitcoins. O’Reilly, Media (2014)Google Scholar
  3. 3.
    Back, A.: A partial hash collision based postage scheme (1997). http://www.hashcash.org/papers/announce.txt. Accessed June 2016
  4. 4.
    Donet Donet, J.A., Pérez-Solà, C., Herrera-Joancomartí, J.: The bitcoin P2P network. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014 Workshops. LNCS, vol. 8438, pp. 87–102. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba, A., Miller, A., Saxena, P., Shi, E., Gün, E.: On scaling decentralized blockchains. In: Proceedings of 3rd Workshop on Bitcoin and Blockchain Research (2016)Google Scholar
  6. 6.
    Visa: 56,582 transaction messages per second!, July 2014. http://visatechmatters.tumblr.com/post/108952718025/56582-transaction-messages-per-second. Accessed June 2016
  7. 7.
    Paypal: Paypal q1 2016 fast facts, June 2016. Accessed June 2016Google Scholar
  8. 8.
    Core, B.: Bitcoin core statement, January 2016. https://bitcoincore.org/en/2016/01/07/statement/. Accessed June 2016
  9. 9.
    Garzik, J.: BIP 100: making decentralized economic policy (2015). Accessed June 2016Google Scholar
  10. 10.
    Andresen, G.: BIP 101: increase maximum block size (2015). Accessed June 2016Google Scholar
  11. 11.
    Garzik, J.: BIP 102: block size increase to 2MB (2015). Accessed June 2016Google Scholar
  12. 12.
    Wuille, P.: BIP 103: block size following technological growth (2015). Accessed June 2016Google Scholar
  13. 13.
    Andresen, G.: BIP 109: two million byte size limit with sigop and sighash limits (2016). Accessed June 2016Google Scholar
  14. 14.
    Lombrozo, E., Lau, J., Wuille, P.: BIP 141: segregated witness (consensus layer) (2015). Accessed June 2016Google Scholar
  15. 15.
    Hearn, M., Spilman, J.: Bitcoin contracts. https://en.bitcoin.it/wiki/Contract. Accessed June 2016
  16. 16.
    Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp. 3–18. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  17. 17.
    Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant payments. Technical report (draft). https://lightning.network (2015)
  18. 18.
    Herrera-Joancomartí, J.: Research and challenges on bitcoin anonymity. In: Garcia-Alfaro, J., Herrera-Joancomartí, J., Lupu, E., Posegga, J., Aldini, A., Martinelli, F., Suri, N. (eds.) DPM/SETOP/QASA 2014. LNCS, vol. 8872, pp. 3–16. Springer, Heidelberg (2015)Google Scholar
  19. 19.
    Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Altshuler, Y., Elovici, Y., Cremers, A.B., Aharony, N., Pentland, A. (eds.) Security and Privacy in Social Networks, pp. 197–223. Springer, New York (2013)CrossRefGoogle Scholar
  20. 20.
    Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 34–51. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  22. 22.
    Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with no names. In: Proceedings of the 2013 Conference on Internet Measurement Conference, IMC 2013, pp. 127–140. ACM, New York (2013)Google Scholar
  23. 23.
    Ober, M., Katzenbeisser, S., Hamacher, K.: Structure and anonymity of the bitcoin transaction graph. Future Internet 5(2), 237–250 (2013)CrossRefGoogle Scholar
  24. 24.
    Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: extracting intelligence from the bitcoin network. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 457–468. Springer, Heidelberg (2014)Google Scholar
  25. 25.
    Biryukov, A., Pustogarov, I.: Bitcoin over tor isn’t a good idea. In: 2015 IEEE Symposium on Security and Privacy (SP), pp. 122–134. IEEE (2015)Google Scholar
  26. 26.
    Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in bitcoin using P2P network traffic. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 469–485. Springer, Heidelberg (2014)Google Scholar
  27. 27.
    Maxwell, G.: Coinjoin: bitcoin privacy for the real world. Post on Bitcoin ForumGoogle Scholar
  28. 28.
    Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mixcoin: anonymity for bitcoin with accountable mixes. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014)Google Scholar
  29. 29.
    Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–90 (1981)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jordi Herrera-Joancomartí
    • 1
  • Cristina Pérez-Solà
    • 1
  1. 1.Dept. d’Enginyeria de la Informació i les ComunicacionsUniversitat Autònoma de BarcelonaBellaterra, CataloniaSpain

Personalised recommendations