Fundamentals of Risk Measurement and Aggregation for Insurance Applications

  • Montserrat Guillen
  • Catalina Bolancé
  • Miguel Santolino
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9880)

Abstract

The fundamentals of insurance are introduced and alternatives to risk measurement are presented, illustrating how the size and likelihood of future losses may be quantified. Real data indicate that insurance companies handle many small losses, while large or extreme claims occur only very rarely. The skewness of the profit and loss probability distribution function is especially troublesome for risk quantification, but its strong asymmetry is successfully addressed with generalizations of kernel estimation. Closely connected to this approach, distortion risk measures study the expected losses of a transformation of the original data. GlueVaR risk measures are presented. The notions of subadditivity and tail-subadditivity are discussed and an overview of risk aggregation is given with some additional applications to insurance.

Keywords

Risk analysis Extremes Quantiles Distortion measures 

References

  1. 1.
    Acerbi, C., Tasche, D.: On the coherence of expected shortfall. J. Bank. Financ. 26(7), 1487–1503 (2002)CrossRefGoogle Scholar
  2. 2.
    Alemany, R., Bolancé, C., Guillen, M.: A nonparametric approach to calculating value-at-risk. Insur. Math. Econ. 52(2), 255–262 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Financ. 9(3), 203–228 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Balbás, A., Garrido, J., Mayoral, S.: Properties of distortion risk measures. Methodol. Comput. Appl. Probab. 11(3), 385–399 (2009)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Belles-Sampera, J., Guillen, M., Santolino, M.: Beyond value-at-risk: GlueVaR distortion risk measures. Risk Anal. 34(1), 121–134 (2014)CrossRefMATHGoogle Scholar
  6. 6.
    Belles-Sampera, J., Guillen, M., Santolino, M.: GlueVaR risk measures in capital allocation applications. Insur. Math. Econ. 58, 132–137 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Belles-Sampera, J., Guillen, M., Santolino, M.: The use of flexible quantile-based measures in risk assessment. Commun. Stat. Theory Methods 45(6), 1670–1681 (2016)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Belles-Sampera, J., Guillen, M., Santolino, M.: What attitudes to risk underlie distortion risk measure choices? Insur. Math. Econ. 68, 101–109 (2016)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Belles-Sampera, J., Merigo, J.M., Guillen, M., Santolino, M.: The connection between distortion risk measures and ordered weighted averaging operators. Insur. Math. Econ. 52(2), 411–420 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bolancé, C., Guillen, M., Nielsen, J.P.: Kernel density estimation of actuarial loss functions. Insur. Math. Econ. 32(1), 19–36 (2003)CrossRefMATHGoogle Scholar
  11. 11.
    Bolancé, C., Guillen, M., Nielsen, J.P.: Inverse Beta transformation in kernel density estimation. Stat. Probab. Lett. 78(13), 1757–1764 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bolancé, C., Guillén, M., Nielsen, J.P.: Transformation kernel estimation of insurance claim cost distributions. In: Corazza, M., Pizzi, C. (eds.) Mathematical and Statistical Methods for Actuarial Sciences and Finance, pp. 43–51. Springer, Milan (2010)CrossRefGoogle Scholar
  13. 13.
    Bolancé, C., Guillen, M., Pelican, E., Vernic, R.: Skewed bivariate models and nonparametric estimation for the CTE risk measure. Insur. Math. Econ. 43(3), 386–393 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Buch-Larsen, T., Nielsen, J.P., Guillen, M., Bolance, C.: Kernel density estimation for heavy-tailed distributions using the Champernowne transformation. Statistics 39(6), 503–516 (2005)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Choquet, G.: Theory of capacities. Ann. de l’Inst. Fourier 5, 131–295 (1954). Institut FourierMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Denneberg, D.: Non-additive Measure and Integral, vol. 27. Springer Science and Business Media, Netherlands (1994)CrossRefMATHGoogle Scholar
  17. 17.
    Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R.: Actuarial Theory for Dependent Risks: Measures, Orders and Models. Wiley, Hoboken (2006)Google Scholar
  18. 18.
    Dhaene, J., Laeven, R.J., Vanduffel, S., Darkiewicz, G., Goovaerts, M.J.: Can a coherent risk measure be too subadditive? J. Risk Insur. 75(2), 365–386 (2008)CrossRefGoogle Scholar
  19. 19.
    Guelman, L., Guillen, M., Pérez-Marín, A.M.: A decision support framework to implement optimal personalized marketing interventions. Decis. Support Syst. 72, 24–32 (2015)CrossRefGoogle Scholar
  20. 20.
    Guillen, M.: Riesgo y seguro en economia. Discurso de ingreso en la Real Academia de Ciencias Economicas y Financieras. Barcelona (2015)Google Scholar
  21. 21.
    Guillen, M., Prieto, F., Sarabia, J.M.: Modelling losses and locating the tail with the Pareto Positive Stable distribution. Insur. Math. Econ. 49(3), 454–461 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Guillen, M., Sarabia, J.M., Prieto, F.: Simple risk measure calculations for sums of positive random variables. Insur. Math. Econ. 53(1), 273–280 (2013)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Jorion, P.: Value at Risk: The New Benchmark for Managing Financial Risk, vol. 3. McGraw-Hill, New York (2007)Google Scholar
  24. 24.
    MacKenzie, C.A.: Summarizing risk using risk measures and risk indices. Risk Anal. 34(12), 2143–2162 (2014)CrossRefGoogle Scholar
  25. 25.
    McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press, Princeton (2015)MATHGoogle Scholar
  26. 26.
    Szeg, G.: Measures of risk. J. Bank. Financ. 26(7), 1253–1272 (2002)CrossRefGoogle Scholar
  27. 27.
    Tsanakas, A., Desli, E.: Measurement and pricing of risk in insurance markets. Risk Anal. 25(6), 1653–1668 (2005)CrossRefGoogle Scholar
  28. 28.
    Wand, M.P., Marron, J.S., Ruppert, D.: Transformations in density estimation. J. Am. Stat. Assoc. 86(414), 343–353 (1991)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Wang, S.: Insurance pricing and increased limits ratemaking by proportional hazards transforms. Insur. Math. Econ. 17(1), 43–54 (1995)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Wang, S.: Premium calculation by transforming the layer premium density. Astin Bull. 26(01), 71–92 (1996)CrossRefGoogle Scholar
  31. 31.
    Yaari, M.E.: The dual theory of choice under risk. Econom. J. Econom. Soc. 55, 95–115 (1987)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Montserrat Guillen
    • 1
  • Catalina Bolancé
    • 1
  • Miguel Santolino
    • 1
  1. 1.Department of Econometrics, Riskcenter-IREAUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations