Completing Preferences by Means of Analogical Proportions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9880)


We suppose that all we know about the preferences of an agent, is given by a (small) collection of relative preferences between choices represented by their evaluations on a set of criteria. Taking lesson from the success of the use of analogical proportions for predicting the class of a new item from a set of classified examples, we explore the possibility of using analogical proportions for completing a set of relative preferences. Such an approach is also motivated by a striking similarity between the formal structure of the axiomatic characterization of weighted averages and the logical definition of an analogical proportion. This paper discusses how to apply an analogical proportion-based approach to the learning of relative preferences, assuming that the preferences are representable by a weighted average, and how to validate experimental results. The approach is illustrated by examples.


  1. 1.
    Bayoudh, S., Miclet, L., Delhay, A.: Learning by analogy: a classification rule for binary and nominal data. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), Hyderabad, India, pp. 678–683 (2007)Google Scholar
  2. 2.
    Bounhas, M., Prade, H., Richard, G.: Ana-logical classification. A new way to deal with examples. In: Proceedings of the ECAI 2014, pp. 135–140 (2014)Google Scholar
  3. 3.
    Dubois, D., Kaci, S., Prade, H.: Expressing Preferences from Generic Rules and Examples – A Possibilistic Approach Without Aggregation Function. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 293–304. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Dubois, D., Prade, H., Richard, G.: Multiple-valued extensions of analogical proportions. Fuzzy Sets Syst. 292, 193–202 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fürnkranz, J., Hüllermeier, E., Rudin, C., Slowinski, R., Sanner, S.: Preference Learning (Dagstuhl Seminar 14101). Dagstuhl Rep. 4(3), 1–27 (2014)Google Scholar
  6. 6.
    Gérard, R., Kaci, S., Prade, H.: Ranking alternatives on the basis of generic constraints and examples - a possibilistic approach. In: Proceedings of the IJCAI 2007, Hyderabad, 6–12 January, pp. 393–398 (2007). In French, Actes LFA 2006, pp. 103–110. Cépaduès 103–110, 2006 (2007)Google Scholar
  7. 7.
    Greco, S., Mousseau, V., Słowiński, R.: Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions. Eur. J. Oper. Res. 191(2), 416–436 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Grabisch, M., Kojadinovic, I., Meyer, P.: A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package. Eur. J. Oper. Res. 186(2), 766–785 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Jacquet-Lagrèze, E., Siskos, Y.: Assessing a set of additive utility functions for multicriteria decision making: the UTA method. Eur. J. Oper. Res. 10, 151–164 (1982)CrossRefMATHGoogle Scholar
  10. 10.
    Jacquet-Lagrèze, E., Siskos, Y.: Preference disaggregation: 20 years of MCDA experience. Eur. J. Oper. Res. 130(2), 233–245 (2001)CrossRefMATHGoogle Scholar
  11. 11.
    Law, M.T., Thome, N., Cord, M.: Quadruplet-wise image similarity learning. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2013)Google Scholar
  12. 12.
    Miclet, L., Prade, H.: Handling analogical proportions in classical logic and fuzzy logics settings. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 638–650. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Modave, F., Dubois, D., Grabisch, M., Prade, H.: A Choquet integral representation in multicriteria decision making. In: Medsker, L. (ed.) Working Notes of the Fall AAAI Symposium “Frontiers in Soft Computing and Decision Systems”, pp. 30–39. In French, Actes LFA 1997, Lyon, pp. 81–90. Cépaduès (1997)Google Scholar
  14. 14.
    Prade, H., Richard, G.: From analogical proportion to logical proportions. Logica Univers. 7(4), 441–505 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Wakker, P.: Additive Representations of Preferences: A New Foundation of Decision Analysis. Springer, Heidelberg (1989)CrossRefMATHGoogle Scholar
  16. 16.
    Pirlot, M., Prade, H.: Complétion analogique de préférences obéissant à une intégrale de Choquet. In: Actes 24\(^{emes}\) Conf. sur la Logique Floue et ses Applications, Poitiers, 5–7 November. Cépaduès (2015)Google Scholar
  17. 17.
    Prade, H., Richard, G.: Reasoning with logical proportions. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Proceedings of the 12th International Conference on Principles of Knowledge Representation and Reasoning (KR 2010), Toronto, 9–13 May. AAAI Press (2010)Google Scholar
  18. 18.
    Prade, H., Rico, A., Serrurier, M., Raufaste, E.: Elicitating sugeno integrals: methodology and a case study. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 712–723. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Yvon, F., Stroppa, N.: Formal models of analogical proportions. Technical reportD008, Ecole Nationale Supérieure des Télécommunications, Paris (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculté PolytechniqueUniversité de MonsMonsBelgium
  2. 2.IRITUniversité Paul SabatierToulouse Cedex 9France
  3. 3.QCISUniversity of TechnologySydneyAustralia

Personalised recommendations