About the Use of Admissible Order for Defining Implication Operators

  • M. Asiain
  • Humberto Bustince
  • B. Bedregal
  • Z. Takáč
  • M. Baczyński
  • D. Paternain
  • G. P. Dimuro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9880)

Abstract

Implication functions are crucial operators for many fuzzy logic applications. In this work, we consider the definition of implication functions in the interval-valued setting using admissible orders and we use this interval-valued implications for building comparison measures.

Keywords

Interval-valued implication operator Admissible order Similarity measure 

References

  1. 1.
    Baczyński, M., Beliakov, G., Bustince, H., Pradera, A.: Advances in Fuzzy Implication Functions. Studies in Fuzziness and Soft Computing, vol. 300. Springer, Berlin (2013)CrossRefMATHGoogle Scholar
  2. 2.
    Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing, vol. 231. Springer, Berlin (2008)MATHGoogle Scholar
  3. 3.
    Bedregal, B., Dimuro, G., Santiago, R., Reiser, R.: On interval fuzzy S-implications. Inf. Sci. 180(8), 1373–1389 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Burillo, P., Bustince, H.: Construction theorems for intuitionistic fuzzy sets. Fuzzy Sets Syst. 84, 271–281 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bustince, H., Barrenechea, E., Mohedano, V.: Intuitionistic fuzzy implication operators. An expression and main properties. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 12(3), 387–406 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bustince, H., Barrenechea, E., Pagola, M.: Relationship between restricted dissimilarity functions, restricted equivalence functions and normal \(E_N\)-functions: image thresholding invariant. Pattern Recogn. Lett. 29(4), 525–536 (2008)CrossRefGoogle Scholar
  7. 7.
    Bustince, H., Barrenechea, E., Pagola, M.: Image thresholding using restricted equivalence functions and maximizing the measure of similarity. Fuzzy Sets Syst. 128(5), 496–516 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bustince, H., Barrenechea, E., Pagola, M.: Restricted equivalence functions. Fuzzy Sets Syst. 157(17), 2333–2346 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J., Xu, Z., Bedregal, B., Montero, J., Hagras, H., Herrera, F., De Baets, B.: A historical account of types of fuzzy sets and their relationship. IEEE Trans. Fuzzy Syst. 24(1), 179–194 (2016)CrossRefGoogle Scholar
  10. 10.
    Bustince, H., Burillo, P., Soria, F.: Automorphisms, negations and implication operators. Fuzzy Sets Syst. 134, 209–229 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bustince, H., Fernández, J., Kolesárová, A., Mesiar, R.: Generation of linear orders for intervals by means of aggregation functions. Fuzzy Sets Syst 220, 69–77 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bustince, H., Galar, M., Bedregal, B., Kolesárová, A., Mesiar, R.: A new approach to interval-valued Choquet integrals and the problem of ordering in interval-valued fuzzy set applications. IEEE Trans. Fuzzy Syst. 21(6), 1150–1162 (2013)CrossRefGoogle Scholar
  13. 13.
    Cornelis, C., Deschrijver, G., Kerre, E.E.: Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application. Int. J. Approx. Reason. 35(1), 55–95 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Massanet, S., Mayor, G., Mesiar, R., Torrens, J.: On fuzzy implication: an axiomatic approach. Int. J. Approx. Reason. 54, 1471–1482 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Pradera, A., Beliakov, G., Bustince, H., De Baets, B.: A review of the relationship between implication, negation and aggregation functions from the point of view of material implication. Inf. Sci. 329, 357–380 (2016)CrossRefGoogle Scholar
  16. 16.
    Riera, J.V., Torrens, J.: Residual implications on the set of discrete fuzzy numbers. Inf. Sci. 247, 131–143 (2013)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Xu, Z., Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 35, 417–433 (2006)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • M. Asiain
    • 1
  • Humberto Bustince
    • 2
    • 3
  • B. Bedregal
    • 4
  • Z. Takáč
    • 5
  • M. Baczyński
    • 6
  • D. Paternain
    • 2
  • G. P. Dimuro
    • 7
  1. 1.Dept. de MatemáticasUniversidad Pública de NavarraPamplonaSpain
  2. 2.Dept. de Automática y ComputaciónUniversidad Pública de NavarraPamplonaSpain
  3. 3.Institute of Smart CitiesUniversidad Pública de NavarraPamplonaSpain
  4. 4.Departamento de Informática e Matemática AplicadaUniversidade Federal do Rio Grande do NorteNatalBrazil
  5. 5.Institute of Information Engineering, Automation and MathematicsSlovak University of Technology in BratislavaBratislavaSlovakia
  6. 6.Institute of MathematicsUniversity of SilesiaKatowicePoland
  7. 7.Centro de Ciências ComputacionaisUniversidade Federal do Rio GrandeRio GrandeBrazil

Personalised recommendations