Monotonicity and Symmetry of IFPD Bayesian Confirmation Measures

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9880)

Abstract

IFPD confirmation measures are used in ranking inductive rules in Data Mining. Many measures of this kind have been defined in literature. We show how some of them are related to each other via weighted means. The special structure of IFPD measures allows to define also new monotonicity and symmetry properties which appear quite natural in such context. We also suggest a way to measure the degree of symmetry of IFPD confirmation measures.

Keywords

Confirmation measures IFPD Monotonicity Symmetry Degree of symmetry 

References

  1. 1.
    Atkinson, D.: Confirmation and justification. A commentary on Shogenji’s measure. Synthese 184, 49–61 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Błaszczyński, J., Greco, S., Matarazzo, B., Słowiński, R.: jMAF - dominance-based rough set data analysis framework. In: Skowron, A., Suraj, Z. (eds.) Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam. ISRL, vol. 42, pp. 185–209. Springer, Heidelberg (2013)Google Scholar
  3. 3.
    Carnap, R.: Logical Foundations of Probability, 2nd edn. University of Chicago Press, Chicago (1962)MATHGoogle Scholar
  4. 4.
    Crupi, V., Festa, R., Buttasi, C.: Towards a grammar of Bayesian confirmation. In: Suárez, M., Dorato, M., Rédei, M. (eds.) Epistemology and Methodology of Science, pp. 73–93. Springer, Dordrecht (2010)Google Scholar
  5. 5.
    Eells, E., Fitelson, B.: Symmetries and asymmetries in evidentual support. Philos. Stud. 107, 129–142 (2002)CrossRefGoogle Scholar
  6. 6.
    Fitelson, B.: The plurality of Bayesian measures of confirmation and the problem of measure sensitivity. Philos. Sci. 66, 362–378 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fitelson, B.: Likelihoodism, Bayesianism, and relational confirmation. Synthese 156, 473–489 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. 38, 1–32 (2006)CrossRefGoogle Scholar
  9. 9.
    Glass, D.H.: Entailment and symmetry in confirmation measures of interestingness. Inf. Sci. 279, 552–559 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Good, I.J.: Probability and the Weighing of Evidence. Charles Griffin, London (1950)MATHGoogle Scholar
  11. 11.
    Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)CrossRefMATHGoogle Scholar
  12. 12.
    Greco, S., Pawlak, Z., Słowiński, R.: Can Bayesian confirmation measures be useful for rough set decision rules? Eng. Appl. Artif. Intell. 17, 345–361 (2004)CrossRefGoogle Scholar
  13. 13.
    Greco, S., Słowiński, R., Szczȩch, I.: Properties of rule interestingness measures and alternative approaches to normalization of measures. Inf. Sci. 216, 1–16 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kemeny, J., Oppenheim, P.: Degrees of factual support. Philos. Sci. 19, 307–324 (1952)CrossRefGoogle Scholar
  15. 15.
    Laboratory of Intelligent Decision Support Systems of the Poznan University of Technology. http://idss.cs.put.poznan.pl/site/software.html
  16. 16.
    Piatetsky-Shapiro, G.: Discovery, Analysis, and Presentation of Strong Rules, pp. 229–248. AAAI/MIT Press, Cambridge (1991)Google Scholar
  17. 17.
    Rescher, N.: A theory of evidence. Philos. Sci. 25, 83–94 (1958)CrossRefGoogle Scholar
  18. 18.
    Shogenji, T.: The degree of epistemic justification and the conjunction fallacy. Synthese 184, 29–48 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Siburg, K.F., Stoimenov, P.A.: Symmetry of functions and exchangeability of random variables. Stat. Pap. 52, 1–15 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Susmaga, R., Szczech, I.: The property of \(\chi ^2_{01}\)-concordance for Bayesian confirmation measures. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Megías, D. (eds.) MDAI 2013. LNCS, vol. 8234, pp. 226–236. Springer, Heidelberg (2013)Google Scholar
  21. 21.
    Susmaga, R., Szczȩch, I.: Can interestingness measures be usefully visualized? Int. J. Appl. Math. Comput. Sci. 25, 323–336 (2015)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Wu, X., Zhang, C., Zhang, S.: Efficient mining of both positive and negative association rules. ACM Trans. Inf. Syst. 22, 381–405 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of ManagementCa’ Foscari University of VeniceVeneziaItaly
  2. 2.Department of EconomicsCa’ Foscari University of VeniceVeneziaItaly

Personalised recommendations