Advertisement

Graphene Hybrid Architectures for Chemical Sensors

  • Parikshit Sahatiya
  • Sushmee BadhulikaEmail author
Chapter
Part of the Carbon Nanostructures book series (CARBON)

Abstract

Graphene, one atom thick allotrope of carbon, has enabled researchers to a new era of exploration due to its unique properties. Graphene is considered to be mother of all carbon materials with excellent electrical, mechanical, optical, and thermal properties that made its use for various engineering applications. Graphene and graphene hybrids have proved over the last decade to be promising material for chemical sensors. High surface-to-volume ratio coupled with high conductivity enabled graphene-based sensors to perform well with high accuracy, high sensitivity and selectivity, low detection limits and long-term stability. To further enhance the properties of graphene, graphene-based hybrids have been synthesized for its use as transducing element in various chemical sensors such as gas and biosensors. These hybrids exhibit the synergistic benefit for both the material for fabrication of efficient sensors with enhanced performance. This chapter focuses on synthesis, characterization and applications of various graphene hybrids in chemical sensors.

Keywords

Graphene Graphene hybrids Functionalized graphene Chemical sensors Electrochemical sensors Biosensors 

References

  1. 1.
    Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46(10):2211–2224CrossRefGoogle Scholar
  2. 2.
    Chang H, Wu H (2013) Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ Sci 6(12):3483–3507CrossRefGoogle Scholar
  3. 3.
    Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9(12):9243–9257CrossRefGoogle Scholar
  4. 4.
    Singh K, Ohlan A, Pham VH, Balasubramaniyan R, Varshney S, Jang J, Kong BS (2013) Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5(6):2411–2420CrossRefGoogle Scholar
  5. 5.
    Traversa E (1995) Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens Actuators B Chem 23(2):135–156CrossRefGoogle Scholar
  6. 6.
    Wohltjen H, Snow AW (1998) Colloidal metal-insulator-metal ensemble chemiresistor sensor. Anal Chem 70(14):2856–2859CrossRefGoogle Scholar
  7. 7.
    Shimizu Y, Egashira M (1999) Basic aspects and challenges of semiconductor gas sensors. MRS Bull 24(06):18–24CrossRefGoogle Scholar
  8. 8.
    Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145CrossRefGoogle Scholar
  9. 9.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SA, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  10. 10.
    Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351–355CrossRefGoogle Scholar
  11. 11.
    Neto AC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109CrossRefGoogle Scholar
  12. 12.
    Mayorov AS, Gorbachev RV, Morozov SV, Britnell L, Jalil R, Ponomarenko LA, Geim AK (2011) Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett 11(6):2396–2399CrossRefGoogle Scholar
  13. 13.
    Kamat PV (2009) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1(2):520–527CrossRefGoogle Scholar
  14. 14.
    Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131CrossRefGoogle Scholar
  15. 15.
    Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1):2–22CrossRefGoogle Scholar
  16. 16.
    Yu D, Dai L (2009) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1(2):467–470CrossRefGoogle Scholar
  17. 17.
    Kim CH, Kim BH, Yang KS (2012) TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis. Carbon 50(7):2472–2481CrossRefGoogle Scholar
  18. 18.
    Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44(6):1962–1967CrossRefGoogle Scholar
  19. 19.
    Lee JM, Pyun YB, Yi J, Choung JW, Park WI (2009) ZnO nanorod–graphene hybrid architectures for multifunctional conductors. J Phys Chem C 113(44):19134–19138CrossRefGoogle Scholar
  20. 20.
    Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3(9):538–542CrossRefGoogle Scholar
  21. 21.
    Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19(38):7098–7105CrossRefGoogle Scholar
  22. 22.
    Bai H, Xu Y, Zhao L, Li C, Shi G (2009) Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun 13:1667–1669CrossRefGoogle Scholar
  23. 23.
    Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8(6):1679–1682CrossRefGoogle Scholar
  24. 24.
    Cai D, Song M (2007) Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. J Mater Chem 17(35):3678–3680CrossRefGoogle Scholar
  25. 25.
    Yan L, Lin M, Zeng C, Chen Z, Zhang S, Zhao X, Guo M (2012) Electroactive and biocompatible hydroxyl-functionalized graphene by ball milling. J Mater Chem 22(17):8367–8371CrossRefGoogle Scholar
  26. 26.
    Jeon JH, Cheedarala RK, Kee CD, Oh IK (2013) Dry-type artificial muscles based on pendent sulfonated chitosan and functionalized graphene oxide for greatly enhanced ionic interactions and mechanical stiffness. Adv Funct Mater 23(48):6007–6018CrossRefGoogle Scholar
  27. 27.
    Sinitskii A, Dimiev A, Corley DA, Fursina AA, Kosynkin DV, Tour JM (2010) Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4(4):1949–1954CrossRefGoogle Scholar
  28. 28.
    Liu H, Ryu S, Chen Z, Steigerwald ML, Nuckolls C, Brus LE (2009) Photochemical reactivity of graphene. J Am Chem Soc 131(47):17099–17101CrossRefGoogle Scholar
  29. 29.
    Georgakilas V, Bourlinos AB, Zboril R, Steriotis TA, Dallas P, Stubos AK, Trapalis C (2010) Organic functionalisation of graphenes. Chem Commun 46(10):1766–1768CrossRefGoogle Scholar
  30. 30.
    He H, Gao C (2010) General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem Mater 22(17):5054–5064CrossRefGoogle Scholar
  31. 31.
    Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131(43):15939–15944CrossRefGoogle Scholar
  32. 32.
    Zhang L, Kiny VU, Peng H, Zhu J, Lobo RF, Margrave JL, Khabashesku VN (2004) Sidewall functionalization of single-walled carbon nanotubes with hydroxyl group-terminated moieties. Chem Mater 6(11):2055–2061CrossRefGoogle Scholar
  33. 33.
    Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564CrossRefGoogle Scholar
  34. 34.
    Yu D, Yang Y, Durstock M, Baek JB, Dai L (2010) Soluble P3HT-grafted graphene for efficient bilayer–heterojunction photovoltaic devices. ACS Nano 4(10):5633–5640CrossRefGoogle Scholar
  35. 35.
    Cao Y, Feng J, Wu P (2010) Alkyl-functionalized graphene nanosheets with improved lipophilicity. Carbon 48(5):1683–1685CrossRefGoogle Scholar
  36. 36.
    Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214CrossRefGoogle Scholar
  37. 37.
    Sreeprasad TS, Berry V (2013) How do the electrical properties of graphene change with its functionalization? Small 9(3):341–350CrossRefGoogle Scholar
  38. 38.
    Subrahmanyam KS, Manna AK, Pati SK, Rao CNR (2010) A study of graphene decorated with metal nanoparticles. Chem Phys Lett 497(1):70–75CrossRefGoogle Scholar
  39. 39.
    Tjoa V, Jun W, Dravid V, Mhaisalkar S, Mathews N (2011) Hybrid graphene–metal nanoparticle systems: electronic properties and gas interaction. J Mater Chem 21(39):15593–15599CrossRefGoogle Scholar
  40. 40.
    Hong W, Bai H, Xu Y, Yao Z, Gu Z, Shi G (2010) Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. J Phys Chem C 114(4):1822–1826CrossRefGoogle Scholar
  41. 41.
    Lu LM, Li HB, Qu F, Zhang XB, Shen GL, Yu RQ (2011) In situ synthesis of palladium nanoparticle–graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens Bioelectron 26(8):3500–3504CrossRefGoogle Scholar
  42. 42.
    Bao Q, Zhang D, Qi P (2011) Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J Colloid Interface Sci 360(2):463–470CrossRefGoogle Scholar
  43. 43.
    Xu C, Wang X, Zhu J (2008) Graphene–metal particle nanocomposites. J Phys Chem C 112(50):19841–19845CrossRefGoogle Scholar
  44. 44.
    Luo Z, Somers LA, Dan Y, Ly T, Kybert NJ, Mele EJ, Johnson AC (2010) Size-selective nanoparticle growth on few-layer graphene films. Nano Lett 10(3):777–781CrossRefGoogle Scholar
  45. 45.
    Xu Z, Shen C, Hou Y, Gao H, Sun S (2009) Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Mater 21(9):1778–1780CrossRefGoogle Scholar
  46. 46.
    Phan DT, Uddin AI, Chung GS (2015) A large detectable-range, high-response and fast-response resistivity hydrogen sensor based on Pt/Pd core–shell hybrid with graphene. Sens Actuators B Chem 220:962–967CrossRefGoogle Scholar
  47. 47.
    Granatier J, Lazar P, Prucek R, Šafářová K, Zbořil R, Otyepka M, Hobza P (2012) Interaction of graphene and arenes with noble metals. J Phys Chem C 116(26):14151–14162CrossRefGoogle Scholar
  48. 48.
    Hassan HM, Abdelsayed V, Abd El Rahman SK, AbouZeid KM, Terner J, El-Shall MS, El-Azhary AA (2009) Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J Mater Chem 19(23):3832–3837CrossRefGoogle Scholar
  49. 49.
    Gu H, Yang Y, Tian J, Shi G (2013) Photochemical synthesis of noble metal (Ag, Pd, Au, Pt) on graphene/ZnO multihybrid nanoarchitectures as electrocatalysis for H2O2 reduction. ACS Appl Mater Interfaces 5(14):6762–6768CrossRefGoogle Scholar
  50. 50.
    Du C, Yao Z, Chen Y, Bai H, Li L (2014) Synthesis of metal nanoparticle@graphene hydrogel composites by substrate-enhanced electroless deposition and their application in electrochemical sensors. RSC Adv 4(18):9133–9138CrossRefGoogle Scholar
  51. 51.
    Zhou X, Huang X, Qi X, Wu S, Xue C, Boey FY, Zhang H (2009) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113(25):10842–10846CrossRefGoogle Scholar
  52. 52.
    Ji Z, Shen X, Zhu G, Zhou H, Yuan A (2012) Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties. J Mater Chem 22(8):3471–3477CrossRefGoogle Scholar
  53. 53.
    Zhou H, Qiu C, Liu Z, Yang H, Hu L, Liu J, Sun L (2009) Thickness-dependent morphologies of gold on N-layer graphenes. J Am Chem Soc 132(3):944–946CrossRefGoogle Scholar
  54. 54.
    Liang Y, Wang H, Casalongue HS, Chen Z, Dai H (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res 3(10):701–705CrossRefGoogle Scholar
  55. 55.
    Yi J, Lee JM, Park WI (2011) Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sens Actuators B Chem 155(1):264–269CrossRefGoogle Scholar
  56. 56.
    Peng L, Peng X, Liu B, Wu C, Xie Y, Yu G (2013) Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett 13(5):2151–2157CrossRefGoogle Scholar
  57. 57.
    Jana NR, Chen Y, Peng X (2004) Size-and shape-controlled magnetic (Cr, Mn, Fe Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16(20):3931–3935CrossRefGoogle Scholar
  58. 58.
    Son DI, Kwon BW, Park DH, Seo WS, Yi Y, Angadi B, Choi WK (2012) Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat Nanotechnol 7(7):465–471CrossRefGoogle Scholar
  59. 59.
    Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, Liu Y (2010) A facile one-step method to produce graphene–CdS quantum dot nanocomposites as promising optoelectronic materials. Adv Mater 22(1):103–106CrossRefGoogle Scholar
  60. 60.
    Tu W, Zhou Y, Liu Q, Yan S, Bao S, Wang X, Zou Z (2013) An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv Funct Mater 23(14):1743–1749CrossRefGoogle Scholar
  61. 61.
    Li Y, Zhao N, Shi C, Liu E, He C (2012) Improve the supercapacity performance of MnO2-decorated graphene by controlling the oxidization extent of graphene. J Phys Chem C 116(48):25226–25232CrossRefGoogle Scholar
  62. 62.
    Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48(13):3825–3833CrossRefGoogle Scholar
  63. 63.
    Feng M, Sun R, Zhan H, Chen Y (2010) Lossless synthesis of graphene nanosheets decorated with tiny cadmium sulfide quantum dots with excellent nonlinear optical properties. Nanotechnology 21(7):075601CrossRefGoogle Scholar
  64. 64.
    Sellappan R, Sun J, Galeckas A, Lindvall N, Yurgens A, Kuznetsov AY, Chakarov D (2013) Influence of graphene synthesizing techniques on the photocatalytic performance of graphene–TiO2 nanocomposites. Phys Chem Chem Phys 15(37):15528–15537CrossRefGoogle Scholar
  65. 65.
    Yin Z, Wu S, Zhou X, Huang X, Zhang Q, Boey F, Zhang H (2010) Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6(2):307–312CrossRefGoogle Scholar
  66. 66.
    Boruah BD, Mukherjee A, Sridhar S, Misra A (2015) Highly dense ZnO nanowires grown on graphene foam for ultraviolet photodetection. ACS Appl Mater Interfaces 7(19):10606–10611CrossRefGoogle Scholar
  67. 67.
    Hwang JO, Lee DH, Kim JY, Han TH, Kim BH, Park M, Kim SO (2011) Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission. J Mater Chem 21(10):3432–3437CrossRefGoogle Scholar
  68. 68.
    Sahatiya P, Badhulika S (2015) One-step in situ synthesis of single aligned graphene–ZnO nanofiber for UV sensing. RSC Adv 5(100):82481–82487CrossRefGoogle Scholar
  69. 69.
    Haridas AK, Sharma CS, Sritharan V, Rao TN (2014) Fabrication and surface functionalization of electrospun polystyrene submicron fibers with controllable surface roughness. RSC Adv 4(24):12188–12197CrossRefGoogle Scholar
  70. 70.
    Wang DW, Li F, Zhao J, Ren W, Chen ZG, Tan J, Cheng HM (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3(7):1745–1752CrossRefGoogle Scholar
  71. 71.
    Asadian E, Shahrokhian S, Jokar E (2014) In-situ electro-polymerization of graphene nanoribbon/polyaniline composite film: Application to sensitive electrochemical detection of dobutamine. Sens Actuators B Chem 196:582–588CrossRefGoogle Scholar
  72. 72.
    Hao Q, Wang H, Yang X, Lu L, Wang X (2011) Morphology-controlled fabrication of sulfonated graphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization and investigation of their electrochemical properties. Nano Res 4(4):323–333CrossRefGoogle Scholar
  73. 73.
    Tien HN, Hur SH (2012) One-step synthesis of a highly conductive graphene–polypyrrole nanofiber composite using a redox reaction and its use in gas sensors. Phys Status Solidi (RRL) 6(9–10):379–381CrossRefGoogle Scholar
  74. 74.
    Sriprachuabwong C, Karuwan C, Wisitsorrat A, Phokharatkul D, Lomas T, Sritongkham P, Tuantranont A (2012) Inkjet-printed graphene–PEDOT: PSS modified screen printed carbon electrode for biochemical sensing. J Mater Chem 22(12):5478–5485CrossRefGoogle Scholar
  75. 75.
    Badhulika S, Paul RK, Terse T, Mulchandani A (2014) Nonenzymatic glucose sensor based on platinum nanoflowers decorated multiwalled carbon nanotubes-graphene hybrid electrode. Electroanalysis 26(1):103–108CrossRefGoogle Scholar
  76. 76.
    Dong Q, Wang G, Hu H, Yang J, Qian B, Ling Z, Qiu J (2013) Ultrasound-assisted preparation of electrospun carbon nanofiber/graphene composite electrode for supercapacitors. J Power Sources 243:350–353CrossRefGoogle Scholar
  77. 77.
    Li Y, Li X, Tang Z, Tang Z, Yu J, Wang J (2015) Hydrogen sensing of the mixed-potential-type MnWO 4/YSZ/Pt sensor. Sens Actuators B Chem 206:176–180CrossRefGoogle Scholar
  78. 78.
    Kaniyoor A, Jafri RI, Arockiadoss T, Ramaprabhu S (2009) Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale 1(3):382–386CrossRefGoogle Scholar
  79. 79.
    Shafiei M, Arsat R, Yu J, Kalantar-Zadeh K, Wlodarski W, Dubin S, Kaner RB (2009) Pt/graphene nano-sheet based hydrogen gas sensor. In: IEEE sensors. IEEE, pp. 295–298Google Scholar
  80. 80.
    Chu BH, Nicolosi J, Lo CF, Strupinski W, Pearton SJ, Ren F (2011) Effect of coated platinum thickness on hydrogen detection sensitivity of graphene-based sensors. Electrochem Solid-State Lett 14(7):K43–K45CrossRefGoogle Scholar
  81. 81.
    Tran QT, Hoa HTM, Yoo DH, Cuong TV, Hur SH, Chung JS, Kohl PA (2014) Reduced graphene oxide as an over-coating layer on silver nanostructures for detecting NH3 gas at room temperature. Sens Actuators B Chem 194:45–50CrossRefGoogle Scholar
  82. 82.
    Song H, Zhang L, He C, Qu Y, Tian Y, Lv Y (2011) Graphene sheets decorated with SnO2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors. J Mater Chem 21(16):5972–5977CrossRefGoogle Scholar
  83. 83.
    Jiang L, Sun G, Zhou Z, Sun S, Wang Q, Yan S, Xin Q (2005) Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts. J Phys Chem B 109(18):8774–8778CrossRefGoogle Scholar
  84. 84.
    Li K, Luo Y, Yu Z, Deng M, Li D, Meng Q (2009) Low temperature fabrication of efficient porous carbon counter electrode for dye-sensitized solar cells. Electrochem Commun 11(7):1346–1349CrossRefGoogle Scholar
  85. 85.
    Zhou L, Shen F, Tian X, Wang D, Zhang T, Chen W (2013) Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale 5(4):1564–1569CrossRefGoogle Scholar
  86. 86.
    Jang WK, Yun J, Kim HI, Lee YS (2013) Improvement of ammonia sensing properties of polypyrrole by nanocomposite with graphitic materials. Colloid Polym Sci 291(5):1095–1103CrossRefGoogle Scholar
  87. 87.
    Gross MA, Sales MJ, Soler MA, Pereira-da-Silva MA, da Silva MF, Paterno LG (2014) Reduced graphene oxide multilayers for gas and liquid phases chemical sensing. RSC Adv 4(34):17917–17924CrossRefGoogle Scholar
  88. 88.
    Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25(5):1070–1074CrossRefGoogle Scholar
  89. 89.
    Li SJ, Xia N, Lv XL, Zhao MM, Yuan BQ, Pang H (2014) A facile one-step electrochemical synthesis of graphene/NiO nanocomposites as efficient electrocatalyst for glucose and methanol. Sens Actuators B Chem 190:809–817CrossRefGoogle Scholar
  90. 90.
    Guo S, Wen D, Zhai Y, Dong S, Wang E (2010) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4(7):3959–3968CrossRefGoogle Scholar
  91. 91.
    Jia N, Huang B, Chen L, Tan L, Yao S (2014) A simple non-enzymatic hydrogen peroxide sensor using gold nanoparticles-graphene–chitosan modified electrode. Sens Actuators B Chem 195:165–170CrossRefGoogle Scholar
  92. 92.
    Devasenathipathy R, Mani V, Chen SM (2014) Highly selective amperometric sensor for the trace level detection of hydrazine at bismuth nanoparticles decorated graphene nanosheets modified electrode. Talanta 124:43–51CrossRefGoogle Scholar
  93. 93.
    Cao S, Zhang L, Chai Y, Yuan R (2013) Electrochemistry of cholesterol biosensor based on a novel Pt–Pd bimetallic nanoparticle decorated graphene catalyst. Talanta 109:167–172CrossRefGoogle Scholar
  94. 94.
    Kumar V, Shorie M, Ganguli AK, Sabherwal P (2015) Graphene–CNT nanohybrid aptasensor for label free detection of cardiac biomarker myoglobin. Biosens Bioelectron 72:56–60CrossRefGoogle Scholar
  95. 95.
    Su M, Zhang Y, Song X, Ge S, Yan M, Yu J, Huang J (2013) Three-dimensional nanoflower-like MnO2 functionalized graphene as catalytically promoted nanolabels for ultrasensitive electrochemiluminescence immunoassay. Electrochim Acta 97:333–340CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIndian Institute of Technology HyderabadHyderabadIndia

Personalised recommendations