Towards a Quantitative Analysis of Crackling Noise by Strain Drop Measurements

  • Viktor Soprunyuk
  • Sabine Puchberger
  • Wilfried Schranz
  • Andreas Tröster
  • Eduard Vives
  • Ekhard K. H. Salje
Part of the Understanding Complex Systems book series (UCS)


The method of measuring strain drops with a Dynamic Mechanical Analyzer (DMA) at slowly varying stress has a considerable potential to become an interesting complementary tool for the study of mechanical failure and earthquake dynamics in micron-sized materials. Evidence for this claim is provided by measurements of the \(\mathrm {SiO_2}\)-based porous materials Vycor and Gelsil under slow uniaxial compression at constant force rates of \(10^{-4}{-}10^{-3}\,\mathrm{N s}^{-1}\) using a Diamond DMA (Dynamical Mechanical Analyzer, Perkin Elmer). The jerky evolution of the sample’s height with time is analyzed in order to determine the corresponding power-law exponents for the maximum velocity distribution, the squared maximum velocity distribution as well as the aftershock activity in the region before macroscopic failure. A comparison with recent results from acoustic emission (AE) data on the same materials (J. Baró, Á. Corral, X. Illa, A. Planes, E. K. H. Salje, W. Schranz, D. E. Soto-Parra, and E. Vives, Phys. Rev. Lett. 110, 088702 (2013)) shows similitude in the statistics, although the two methods operate on different spatial and temporal scales. Moreover, the obtained power-law exponents are in reasonable agreement with theoretical mean-field values (M. LeBlanc, L. Angheluta, K. Dahmen, N. Goldenfeld, Phys. Rev. B 87, 022126 (2013)). The results indicate that the failure dynamics of materials can be well studied by measuring strain drops under slow compression, which opens the possibility to study earthquake dynamics in the laboratory also at non-ambient conditions, i.e. at high temperatures or under confining liquid pore pressure.

PACS numbers 89.75.Da 91.30.Dk 



We acknowledge financial support from the Austrian Science Fund (FWF) projects P28672-N36 and P27738-N28.


  1. 1.
    E.K.H. Salje, D.E. Soto-Parra, A. Planes, E. Vives, M. Reinecker, W. Schranz, Philos. Mag. Lett. 91, 554 (2011)Google Scholar
  2. 2.
    J. Baró, Á. Corral, X. Illa, A. Planes, E.K.H. Salje, W. Schranz, D.E. Soto-Parra, E. Vives, Phys. Rev. Lett. 110, 088702 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    F. Kun, I. Varga, S. Lennartz-Sassinek, I.G. Main, Phys. Rev. Lett. 112, 065501 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    J.P. Sethna, K.A. Dahmen, C.R. Myers, Nature 410, 242 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    E.K.H. Salje, K.A. Dahmen, Crackling noise in disordered materials, ed. J.S. Langer. Annu. Rev. Condens. Matter Phys. 5, 233–254 (2014)Google Scholar
  6. 6.
    G. Durin, S. Zapperi, in The Science of Hysteresis, vol. II, ed. by G. Bertotti, I. Mayergoyz (Elsevier, Amsterdam, 2006), pp. 181–267Google Scholar
  7. 7.
    F. Colaiori, Adv. Phys. 57, 287 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    D.M. Dimiduk, C. Woodward, R. LeSar, M.D. Uchic, Science 26, 1188 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    M.-C. Miguel, A. Vespignani, S. Zapperi, J. Weiss, J.-R. Grasso, Nature 410, 667 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    A. Vinogradov, I.S. Yasnikov, Acta Materialia 70, 8 (2014)CrossRefGoogle Scholar
  11. 11.
    M. Zaiser, J. Schwerdtfeger, A.S. Schneider, C.P. Frick, B.G. Clark, P.A. Gruber, E. Arzt, Philos. Mag. 88, 30–32, 3861 (2008)Google Scholar
  12. 12.
    M.C. Gallardo, J. Manchado, F.J. Romero, J. del Cerro, E.K.H. Salje, A. Planes, E. Vives, R. Romero, M. Stipcich, Phys. Rev. B 81, 174102 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    J. Baró, J.-M. Martin-Olalla, F.J. Romero, M.C. Gallardo, E.K.H. Salje, E. Vives, A. Planes, J. Phys.-Condens. Matter 26, 125401 (2014)Google Scholar
  14. 14.
    E.K.H. Salje, J. Koppensteiner, M. Reinecker, W. Schranz, A. Planes, Appl. Phys. Lett. 95, 231908 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    L.I. Salminen, A.I. Tolvanen, M.J. Alava, Phys. Rev. Lett. 89, 185503 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    S. Santucci, P.P. Cortet, S. Deschanel, L. Vanel, S. Ciliberto, Europhys. Lett. 74(4), 595 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    M. Stojanova, S. Santucci, L. Vanel, O. Ramos, Phys. Rev. Lett. 112, 115502 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    E.K.H. Salje, G.I. Lampronti, D.E. Soto-Parra, J. Bar, A. Planes, E. Vives, Am. Mineral. 98, 609 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    G.F. Nataf, P.O. Castillo-Villa, J. Baró, X. Illa, E. Vives, A. Planes, Phys. Rev. E 90, 022405 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    G. Nataf, P.O. Castillo-Villa, P. Sellappan, W.M. Kriven, E. Vives, A. Planes, E.K.H. Salje, J. Phys. Condens. Matter 26, 275401 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    P.O. Castillo-Villa, J. Baró, A. Planes, E.K.H. Salje, P. Sellappan, W.M. Kriven, E. Vives, J. Phys. Condens. Matter 25, 292202 (2013)CrossRefGoogle Scholar
  22. 22.
    E.K.H. Salje, X. Wang, X. Ding, J. Sun, Phys. Rev. B 90, 064103 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    E. Dul’kin, E.K.H. Salje, O. Aktas, R.W. Whatmore, M. Roth, Applied. Phys. Lett. 105, 212901 (2014)Google Scholar
  24. 24.
    E.K.H. Salje, W. Schranz, Z. Kristallographie 226, 1 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    P. Levitz, G. Ehret, S.K. Sinha, J.M. Drake, J. Chem. Phys. 95, 6151 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    N. Eschricht, E. Hoinkis, F. Mdler, P. Schubert-Bischoff, Stud. Surf. Sci. Catal. 144, 355 (2002)CrossRefGoogle Scholar
  27. 27.
    J. Koppensteiner, W. Schranz, M.A. Carpenter, Phys. Rev. B 81, 024202 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    A. Ghaffar, Confinement-Induced Structural Changes of Alkali Metals in Nanoporous Systems (Universität Wien, Vienna, 2014)Google Scholar
  29. 29.
    W. Schranz, Phase Transit. 64, 103 (1997)CrossRefGoogle Scholar
  30. 30.
    Since we can measure length changes only when whole planes collapse, we have to multiply the typical crack length \(a\) by the number of broken bonds in one plane, but since the force that is acting on a bond is divided by the same number of broken bonds, the two terms cancel for the released elastic energyGoogle Scholar
  31. 31.
    We analyzed data only starting from the second cycle, since the first cycle seems to be contaminated by cracks due to tiny irregularities in the surfaceGoogle Scholar
  32. 32.
    A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51, 661 (2009)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    A. Deluca, A. Corral, Acta Geophys. 61, 1351 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    A.K. Hartmann, Big Practical Guide to Computer Simulations, 2nd edn. (World Scientific, Singapore, 2015)CrossRefGoogle Scholar
  35. 35.
    M. LeBlanc, L. Angheluta, K. Dahmen, N. Goldenfeld, Phys. Rev. E 87, 022126 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    T. Utsu, Y. Ogata, R.S. Matsuura, J. Phys. Earth 43, 1 (1995)Google Scholar
  37. 37.
    M. LeBlanc, L. Angheluta, K. Dahmen, N. Goldenfeld, Phys. Rev. Lett. 109, 105702 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    K. Dahmen, J.P. Sethna, Phys. Rev. B 53, 14872 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Viktor Soprunyuk
    • 1
  • Sabine Puchberger
    • 1
  • Wilfried Schranz
    • 1
  • Andreas Tröster
    • 2
  • Eduard Vives
    • 3
  • Ekhard K. H. Salje
    • 4
  1. 1.Faculty of PhysicsUniversity of ViennaWienAustria
  2. 2.Institute of Material Chemistry, Vienna University of TechnologyWienAustria
  3. 3.Facultat de Física, Departament d’Estructura i Constituents de la MatériaUniversitat de BarcelonaBarcelonaSpain
  4. 4.Department of Earth SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations