Two-Level Polytopes with a Prescribed Facet

  • Samuel Fiorini
  • Vissarion Fisikopoulos
  • Marco Macchia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9849)

Abstract

A (convex) polytope is said to be 2-level if for every facet-defining direction of hyperplanes, its vertices can be covered with two hyperplanes of that direction. These polytopes are motivated by questions, e.g., in combinatorial optimization and communication complexity. We study 2-level polytopes with one prescribed facet. Based on new general findings about the structure of 2-level polytopes, we give a complete characterization of the 2-level polytopes with some facet isomorphic to a sequentially Hanner polytope, and improve the enumeration algorithm of Bohn et al. (ESA 2015). We obtain, for the first time, the complete list of d-dimensional 2-level polytopes up to affine equivalence for dimension \(d = 7\). As it turns out, geometric constructions that we call suspensions play a prominent role in both our theoretical and experimental results. This yields exciting new research questions on 2-level polytopes, which we state in the paper.

References

  1. 1.
    Aichholzer, O.: Extremal properties of 0/1-polytopes of dimension 5. In: Ziegler, G., Kalai, G. (eds.) Polytopes - Combinatorics and Computation, pp. 111–130. Birkhäuser, Basel (2000)CrossRefGoogle Scholar
  2. 2.
    Bohn, A., Faenza, Y., Fiorini, S., Fisikopoulos, V., Macchia, M., Pashkovich, K.: Enumeration of 2-level polytopes. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 191–202. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48350-3_17 CrossRefGoogle Scholar
  3. 3.
    Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory Ser. B 18, 138–154 (1975)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Fukuda, K., Miyata, H., Moriyama, S.: Complete enumeration of small realizable oriented matroids. Discrete Comput. Geom. 49(2), 359–381 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ganter, B., Reuter, K.: Finding all closed sets: a general approach. Order 8(3), 283–290 (1991)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gawrilow, E., Joswig, M.: Polymake: an approach to modular software design in computational geometry. In: International Symposium on Computational Geometry (SOCG), pp. 222–231. ACM Press (2001)Google Scholar
  7. 7.
    Gouveia, J., Parrilo, P., Thomas, R.: Theta bodies for polynomial ideals. SIAM J. Optim. 20(4), 2097–2118 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gouveia, J., Pashkovich, K., Robinson, R.Z., Thomas, R.R.: Four dimensional polytopes of minimum positive semidefinite rank (2015)Google Scholar
  9. 9.
    Gouveia, J., Robinson, R., Thomas, R.: Polytopes of minimum positive semidefinite rank. Discrete Comput. Geom. 50(3), 679–699 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Grande, F.: On \(k\)-level matroids: geometry and combinatorics. Ph.D. thesis, Free University of Berlin (2015)Google Scholar
  11. 11.
    Grande, F., Rué, J.: Many 2-level polytopes from matroids. Discrete Comput. Geom. 54(4), 954–979 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Grande, F., Sanyal, R.: Theta rank, levelness, matroid minors. arXiv preprint (2014). arXiv:1408.1262
  13. 13.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics, vol. 2. Springer, Heidelberg (1988)MATHGoogle Scholar
  14. 14.
    Hanner, O.: Intersections of translates of convex bodies. Mathematica Scandinavica 4, 65–87 (1956)MathSciNetMATHGoogle Scholar
  15. 15.
    Hansen, A.: On a certain class of polytopes associated with independence systems. Mathematica Scandinavica 41, 225–241 (1977)MathSciNetMATHGoogle Scholar
  16. 16.
    Kalai, G.: The number of faces of centrally-symmetric polytopes. Graphs Comb. 5(1), 389–391 (1989)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lovász, L.: Semidefinite programs and combinatorial optimization. In: Reed, B.A., Sales, C.L. (eds.) Recent Advances in Algorithms and Combinatorics. CMS Books in Mathematics, pp. 137–194. Springer, Heidelberg (2003)Google Scholar
  18. 18.
    Lovász, L., Saks, M.: Lattices, mobius functions and communications complexity. In: Proceedings of the 29th Annual Symposium on Foundations of Computer Science, SFCS 1988, pp. 81–90. IEEE Computer Society, Washington (1988)Google Scholar
  19. 19.
    Mahler, K.: Ein übertragungsprinzip für konvexe körper. Časopis Pěst. Mat. Fys. 68, 93–102 (1939)MathSciNetMATHGoogle Scholar
  20. 20.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)MATHGoogle Scholar
  21. 21.
    Stanley, R.: Two poset polytopes. Discrete Comput. Geom. 1(1), 9–23 (1986)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Samuel Fiorini
    • 1
  • Vissarion Fisikopoulos
    • 1
  • Marco Macchia
    • 1
  1. 1.Département de MathématiqueUniversité libre de BruxellesBrusselsBelgium

Personalised recommendations