A Decomposition Approach for Single Allocation Hub Location Problems with Multiple Capacity Levels

  • Borzou RostamiEmail author
  • Christopher Strothmann
  • Christoph Buchheim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9849)


In this paper we consider an extended version of the classical capacitated single allocation hub location problem in which the size of the hubs must be chosen from a finite and discrete set of allowable capacities. We develop a Lagrangian relaxation approach that exploits the problem structure and decomposes the problem into a set of smaller subproblems that can be solved efficiently. Upper bounds are derived by Lagrangian heuristics followed by a local search method. Moreover, we propose some reduction tests that allow us to decrease the size of the problem. Our computational experiments on some challenging benchmark instances from literature show the advantage of the decomposition approach over commercial solvers.


Hub location Capacity decisions Lagrangian relaxation 


  1. 1.
    Alumur, S.A., Kara, B.Y.: Network hub location problems: the state of the art. Eur. J. Oper. Res. 190(1), 1–21 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Campbell, J.F.: Integer programming formulations of discrete hub location problems. Eur. J. Oper. Res. 72(2), 387–405 (1994)CrossRefzbMATHGoogle Scholar
  3. 3.
    Campbell, J.F., O’Kelly, M.E.: Twenty-five years of hub location research. Transp. Sci. 46(2), 153–169 (2012)CrossRefGoogle Scholar
  4. 4.
    Contreras, I., Díaz, J.A., Fernández, E.: Branch and price for large-scale capacitated hub location problems with single assignment. INFORMS J. Comput. 23(1), 41–55 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Correia, I., Nickel, S., Saldanha-da Gama, F.: Single-assignment hub location problems with multiple capacity levels. Transp. Res. Part B Method. 44(8), 1047–1066 (2010)CrossRefGoogle Scholar
  6. 6.
    Ernst, A.T., Krishnamoorthy, M.: Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location Sci. 4(3), 139–154 (1996)CrossRefzbMATHGoogle Scholar
  7. 7.
    Ernst, A.T., Krishnamoorthy, M.: Exact and heuristic algorithms for the uncapacitated multiple allocation \(p\)-hub median problem. Eur. J. Oper. Res. 104(1), 100–112 (1998)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ernst, A.T., Krishnamoorthy, M.: Solution algorithms for the capacitated single allocation hub location problem. Ann. Oper. Res. 86, 141–159 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    da Graça Costa, M., Captivo, M.E., Clímaco, J.: Capacitated single allocation hub location problem-a bi-criteria approach. Comput. Oper. Res. 35(11), 3671–3695 (2008)CrossRefzbMATHGoogle Scholar
  10. 10.
    Jaillet, P., Song, G., Yu, G.: Airline network design and hub location problems. Location Sci. 4(3), 195–212 (1996)CrossRefzbMATHGoogle Scholar
  11. 11.
    Klincewicz, J.G.: Hub location in backbone/tributary network design: a review. Location Sci. 6(1), 307–335 (1998)CrossRefGoogle Scholar
  12. 12.
    Labbé, M., Yaman, H., Gourdin, E.: A branch and cut algorithm for hub location problems with single assignment. Math. Program. 102(2), 371–405 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Meier, J.F., Clausen, U., Rostami, B., Buchheim, C.: A compact linearisation of Euclidean single allocation hub location problems. Electronic Notes in Discrete Mathematics Accepted for Publication (2015)Google Scholar
  14. 14.
    Nickel, S., Schöbel, A., Sonneborn, T.: Hub location problems in urban traffic networks. In: Pursula, M., Niittymäki, J. (eds.) Mathematical Methods on Optimization in Transportation Systems, pp. 95–107. Springer, New York (2001)CrossRefGoogle Scholar
  15. 15.
    O’Kelly, M.E.: A quadratic integer program for the location of interacting hub facilities. Eur. J. Oper. Res. 32(3), 393–404 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rostami, B., Buchheim, C., Meier, J.F., Clausen, U.: Lower bounding procedures for the single allocation hub location problem. Electronic Notes in Discrete Mathematics Accepted for Publication (2015)Google Scholar
  17. 17.
    Rostami, B., Meier, J.F., Buchheim, C., Clausen, U.: The uncapacitated single allocation \(p\)-hub median problem with stepwise cost function. Technical report, Optimization Online (2015).
  18. 18.
    Skorin-Kapov, D., Skorin-Kapov, J., O’Kelly, M.: Tight linear programming relaxations of uncapacitated \(p\)-hub median problems. Eur. J. Oper. Res. 94(3), 582–593 (1996)CrossRefzbMATHGoogle Scholar
  19. 19.
    Yaman, H., Carello, G.: Solving the hub location problem with modular link capacities. Comput. Oper. Res. 32(12), 3227–3245 (2005)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Borzou Rostami
    • 1
    Email author
  • Christopher Strothmann
    • 1
  • Christoph Buchheim
    • 1
  1. 1.Fakultät für MathematikTU DortmundDortmundGermany

Personalised recommendations