On the Finite Optimal Convergence of Logic-Based Benders’ Decomposition in Solving 0–1 Min-Max Regret Optimization Problems with Interval Costs

  • Lucas Assunção
  • Andréa Cynthia Santos
  • Thiago F. Noronha
  • Rafael Andrade
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9849)

Abstract

This paper addresses a class of problems under interval data uncertainty composed of min-max regret versions of classical 0–1 optimization problems with interval costs. We refer to them as interval 0–1 min-max regret problems. The state-of-the-art exact algorithms for this class of problems work by solving a corresponding mixed integer linear programming formulation in a Benders’ decomposition fashion. Each of the possibly exponentially many Benders’ cuts is separated on the fly through the resolution of an instance of the classical 0–1 optimization problem counterpart. Since these separation subproblems may be NP-hard, not all of them can be modeled by means of linear programming, unless P = NP. In these cases, the convergence of the aforementioned algorithms are not guaranteed in a straightforward manner. In fact, to the best of our knowledge, their finite convergence has not been explicitly proved for any interval 0–1 min-max regret problem. In this work, we formally describe these algorithms through the definition of a logic-based Benders’ decomposition framework and prove their convergence to an optimal solution in a finite number of iterations. As this framework is applicable to any interval 0–1 min-max regret problem, its finite optimal convergence also holds in the cases where the separation subproblems are NP-hard.

References

  1. 1.
    Aissi, H., Bazgan, C., Vanderpooten, D.: Min-max and min-max regret versions of combinatorial optimization problems: a survey. Eur. J. Oper. Res. 197(2), 427–438 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Averbakh, I.: On the complexity of a class of combinatorial optimization problems with uncertainty. Math. Program. 90(2), 263–272 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Averbakh, I.: Computing and minimizing the relative regret in combinatorial optimization with interval data. Discrete Optim. 2(4), 273–287 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4(1), 238–252 (1962)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Coco, A.A., Júnior, J.C.A., Noronha, T.F., Santos, A.C.: An integer linear programming formulation and heuristics for the minmax relative regret robust shortest path problem. J. Glob. Optim. 60(2), 265–287 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Codato, G., Fischetti, M.: Combinatorial Benders’ cuts for mixed-integer linear programming. Oper. Res. 54(4), 756–766 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Côté, J.F., Dell’Amico, M., Iori, M.: Combinatorial Benders’ cuts for the strip packing problem. Oper. Res. 62(3), 643–661 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fischetti, M., Salvagnin, D., Zanette, A.: A note on the selection of Benders’ cuts. Math. Program. 124(1–2), 175–182 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)MATHGoogle Scholar
  10. 10.
    Geoffrion, A.M.: Generalized Benders decomposition. J. Optim. Theo. Appl. 10(4), 237–260 (1972)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hooker, J., Ottosson, G.: Logic-based Benders decomposition. Math. Program. 96(1), 33–60 (2003)MathSciNetMATHGoogle Scholar
  12. 12.
    Karaşan, O.E., Pinar, M.Ç., Yaman, H.: The robust shortest path problem with interval data. Technical report, Bilkent University, Ankara, Turkey (2001)Google Scholar
  13. 13.
    Kasperski, A.: Discrete Optimization with Interval Data: Minmax Regret and Fuzzy Approach (Studies in Fuzziness and Soft Computing). Springer, Berlin (2008)MATHGoogle Scholar
  14. 14.
    Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer Academic Publishers, Boston (1997)CrossRefMATHGoogle Scholar
  15. 15.
    Magnanti, T.L., Wong, R.T.: Accelerating Benders decomposition: algorithmic enhancement and model selection criteria. Oper. Res. 29(3), 464–484 (1981)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    McDaniel, D., Devine, M.: A modified Benders’ partitioning algorithm for mixed integer programming. Manag. Sci. 24(3), 312–319 (1977)CrossRefMATHGoogle Scholar
  17. 17.
    Montemanni, R.: A Benders decomposition approach for the robust spanning tree problem with interval data. Eur. J. Oper. Res. 174(3), 1479–1490 (2006)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Montemanni, R., Barta, J., Gambardella, L.M.: The robust traveling salesman problem with interval data. Transp. Sci. 41(3), 366–381 (2007)CrossRefGoogle Scholar
  19. 19.
    Montemanni, R., Gambardella, L.M.: The robust shortest path problem with interval data via Benders decomposition. 4OR 3(4), 315–328 (2005)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Pereira, J., Averbakh, I.: Exact and heuristic algorithms for the interval data robust assignment problem. Comput. Oper. Res. 38(8), 1153–1163 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Pereira, J., Averbakh, I.: The robust set covering problem with interval data. Ann. Oper. Res. 207(1), 217–235 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation Simulation and Control. Wiley, New York (2003)CrossRefMATHGoogle Scholar
  23. 23.
    Yaman, H., Karaşan, O.E., Pinar, M.Ç.: The robust spanning tree problem with interval data. Oper. Res. Lett. 29(1), 31–40 (2001)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lucas Assunção
    • 1
  • Andréa Cynthia Santos
    • 2
  • Thiago F. Noronha
    • 3
  • Rafael Andrade
    • 4
  1. 1.Departamento de Engenharia de ProduçãoUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.ICD-LOSI, UMR CNRS 6281, Université de Technologie de TroyesTroyes CedexFrance
  3. 3.Departamento de Ciência da ComputaçãoUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  4. 4.Departamento de Estatística e Matemática AplicadaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations