ResilientStore: A Heuristic-Based Data Format Selector for Intermediate Results

  • Rana Faisal Munir
  • Oscar Romero
  • Alberto Abelló
  • Besim Bilalli
  • Maik Thiele
  • Wolfgang Lehner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9893)

Abstract

Large-scale data analysis is an important activity in many organizations that typically requires the deployment of data-intensive workflows. As data is processed these workflows generate large intermediate results, which are typically pipelined from one operator to the following. However, if materialized, these results become reusable, hence, subsequent workflows need not recompute them. There are already many solutions that materialize intermediate results but all of them assume a fixed data format. A fixed format, however, may not be the optimal one for every situation. For example, it is well-known that different data fragmentation strategies (e.g., horizontal and vertical) behave better or worse according to the access patterns of the subsequent operations. In this paper, we present ResilientStore, which assists on selecting the most appropriate data format for materializing intermediate results. Given a workflow and a set of materialization points, it uses rule-based heuristics to choose the best storage data format based on subsequent access patterns. We have implemented ResilientStore for HDFS and three different data formats: SequenceFile, Parquet and Avro. Experimental results show that our solution gives 18 % better performance than any solution based on a single fixed format.

Keywords

Big data Data-intensive workflows Intermediate results Data format HDFS 

Notes

Acknowledgments

This research has been funded by the European Commission through the Erasmus Mundus Joint Doctorate “Information Technologies for Business Intelligence - Doctoral College” (IT4BI-DC).

References

  1. 1.
    Abelló, A., Ferrarons, J., Romero, O.: Building cubes with MapReduce. In: Proceedings of the DOLAP (2011)Google Scholar
  2. 2.
    Alagiannis, I., Idreos, S., Ailamaki, A.: H2O: a hands-free adaptive store. In: Proceedings of the SIGMOD (2014)Google Scholar
  3. 3.
    Chen, Y., Alspaugh, S., Katz, R.: Interactive analytical processing in big data systems: a cross-industry study of MapReduce workloads. In: Proceedings of the VLDB (2012)Google Scholar
  4. 4.
    Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: Proceedings of the OSDI (2004)Google Scholar
  5. 5.
    DeWitt, D.J., Halverson, A., Nehme, R., Shankar, S., Aguilar-Saborit, J., Avanes, A., Flasza, M., Gramling, J.: Split query processing in polybase. In: Proceedings of the SIGMOD (2013)Google Scholar
  6. 6.
    Elghandour, I., Aboulnaga, A.: ReStore: reusing results of MapReduce jobs. In: Proceedings of the VLDB (2012)Google Scholar
  7. 7.
    Elmore, A., Duggan, J., Stonebraker, M., Balazinska, M., Gadepally, V., Heer, J., Howe, B., Kepner, J., Kraska, T., Madden, S., Maier, D., Mattson, T., Papadopoulos, S., Parkhurst, J., Tatbul, N., Vartak, M., Zdonik, S.: A demonstration of the BigDAWG polystore system. In: Proceedings of the VLDB (2015)Google Scholar
  8. 8.
    Färber, F., Cha, S.K., Primsch, J., Bornhovd, C., Sigg, S., Lehner, W.: SAP HANA database - data management for modern business applications. In: Proceedings of the SIGMOD Record (2011)Google Scholar
  9. 9.
    Floratou, A., Patel, J.M., Shekita, E.J., Tata, S.: Column-oriented storage techniques for MapReduce. In: Proceedings of the VLDB (2011)Google Scholar
  10. 10.
    Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. In: Proceedings of the SOSP (2003)Google Scholar
  11. 11.
    He, Y., Lee, R., Huai, Y., Shao, Z., Jain, N., Zhang, X., Xu, Z.: RCFile: a fast and space-efficient data placement structure in MapReduce-based warehouse systems. In: Proceedings of the ICDE (2011)Google Scholar
  12. 12.
    Idreos, S., Alagiannis, I., Johnson, R., Ailamaki, A.: Here are my Data Files. Here are my Queries. Where are my Results? In: Proceedings of the CIDR (2011)Google Scholar
  13. 13.
    Jindal, A., Quian-Ruiz, J.-A., Dittrich, J.: Trojan data layouts: right shoes for a running elephant. In: Proceedings of the SOCC (2011)Google Scholar
  14. 14.
    Jindal, A., Quian-Ruiz, J.-A., Dittrich, J.: WWHow! freeing data storage from cages. In: Proceedings of the CIDR (2013)Google Scholar
  15. 15.
    Jovanovic, P., Romero, O., Simitsis, A., Abelló, A.: Incremental consolidation of data-intensive multi-flows. In: Proceedings of the TKDE (2016)Google Scholar
  16. 16.
    Kalavri, V., Shang, H., Vlassov, V.: m2r2: a framework for results materialization and reuse. In: Proceedings of the BDSE (2013)Google Scholar
  17. 17.
    Raman, V., Attaluri, G., Barber, R., Chainani, N., Kalmuk, D., KulandaiSamy, V., Leenstra, J., Lightstone, S., Liu, S., Lohman, G.M., Malkemus, T., Mueller, R., Pandis, I., Schiefer, B., Sharpe, D., Sidle, R., Storm, A., Zhang, L.: DB2 with BLU acceleration: so much more than just a column store. In: Proceedings of the VLDB (2013)Google Scholar
  18. 18.
    Schaarschmidt, M., Gessert, F., Ritter, N.: Towards automated polyglot persistence. In: Proceedings of the BTW (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rana Faisal Munir
    • 1
  • Oscar Romero
    • 1
  • Alberto Abelló
    • 1
  • Besim Bilalli
    • 1
  • Maik Thiele
    • 2
  • Wolfgang Lehner
    • 2
  1. 1.Universitat Politécnica de Catalunya (UPC)BarcelonaSpain
  2. 2.Technische Universität Dresden (TUD)DresdenGermany

Personalised recommendations