Advertisement

Maintenance of Profile Matchings in Knowledge Bases

  • Jorge Martinez-Gil
  • Lorena Paoletti
  • Gábor Rácz
  • Attila Sali
  • Klaus-Dieter Schewe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9893)

Abstract

A profile describes a set of properties, e.g. a set of skills a person may have or a set of skills required for a particular job. Profile matching aims to determine how well a given profile fits to a requested profile. Profiles can be defined by filters in a lattice of concepts derived from a knowledge base that is grounded in description logic, and matching can be realised by assigning values in [0,1] to pairs of such filters: the higher the matching value the better is the fit. In this paper the problem is investigated, whether given a set of filters together with matching values determined by some human expert a matching measure can be determined such that the computed matching values preserve the rankings given by the expert. In the paper plausibility constraints for the values given by an expert are formulated. If these plausibility constraints are satisfied, the problem of determining a ranking-preserving matching measure can be solved.

References

  1. 1.
    Baader, F., et al. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, New York (2003)zbMATHGoogle Scholar
  2. 2.
    European distionary of skills and competences. http://www.disco-tools.eu
  3. 3.
    Falk, T., et al.: Semantic-web-technologien in der Arbeitsplatzvermittlung. Informatik Spektrum 29(3), 201–209 (2006)CrossRefGoogle Scholar
  4. 4.
    Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.: OWL 2: the next step for OWL. J. Web Semant. 6(4), 309–322 (2008)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    International Standard Classification of Occupations (2008). http://www.ilo.org/public/english/bureau/stat/isco/isco08/
  8. 8.
    Levandowsky, M., Winter, D.: Distance between sets. Nature 234(5), 34–35 (1971)CrossRefGoogle Scholar
  9. 9.
    Looser, D., Ma, H., Schewe, K.-D.: Using formal concept analysis for ontology maintenance in human resource recruitment. In: Ferrarotti, F., Grossmann, G. (eds.) Ninth Asia-Pacific Conference on Conceptual Modelling (APCCM 2013), vol. 143. CRPIT, pp. 61–68. Australian Computer Society (2013)Google Scholar
  10. 10.
    Mochol, M., Wache, H., Nixon, L.J.B.: Improving the accuracy of job search with semantic techniques. In: Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 301–313. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Paoletti, A.L., Martinez-Gil, J., Schewe, K.-D.: Extending knowledge-based profile matching in the human resources domain. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp. 21–35. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  12. 12.
    Paoletti, A.L., Martinez-Gil, J., Schewe, K.-D.: Top-k matching queries for filter-based profile matching in knowledge bases. In: Ma, H., Hartmann, S. (eds.) Database and Expert Systems Applications (DEXA 2016), LNCS. Springer, Heidelberg (2016, to appear)Google Scholar
  13. 13.
    Popov, N., Jebelean, T.: Semantic matching for job search engines - a logical approach. Technical report 13–02, Research Institute for Symbolic Computation, JKU Linz (2013)Google Scholar
  14. 14.
    Rácz, G., Sali, A., Schewe, K.-D.: Semantic matching strategies for job recruitment: a comparison of new and known approaches. In: Gyssens, M., Simari, G. (eds.) FoIKS 2016. LNCS, vol. 9616, pp. 149–168. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-30024-5_9 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jorge Martinez-Gil
    • 1
  • Lorena Paoletti
    • 1
  • Gábor Rácz
    • 2
  • Attila Sali
    • 2
  • Klaus-Dieter Schewe
    • 1
  1. 1.Software Competence Center HagenbergHagenbergAustria
  2. 2.Alfréd Rényi Institute of MathematicsBudapestHungary

Personalised recommendations