Advertisement

Molecular Pharmacology of Phytocannabinoids

  • Sarah E. Turner
  • Claire M. Williams
  • Leslie IversenEmail author
  • Benjamin J. Whalley
Part of the Progress in the Chemistry of Organic Natural Products book series (POGRCHEM, volume 103)

Abstract

Cannabis sativa has been used for recreational, therapeutic and other uses for thousands of years. The plant contains more than 120 C21 terpenophenolic constituents named phytocannabinoids. The Δ9-tetrahydrocannabinol type class of phytocannabinoids comprises the largest proportion of the phytocannabinoid content. Δ9-tetrahydrocannabinol was first discovered in 1971. This led to the discovery of the endocannabinoid system in mammals, including the cannabinoid receptors CB1 and CB2. Δ9-Tetrahydrocannabinol exerts its well-known psychotropic effects through the CB1 receptor but this effect of Δ9-tetrahydrocannabinol has limited the use of cannabis medicinally, despite the therapeutic benefits of this phytocannabinoid. This has driven research into other targets outside the endocannabinoid system and has also driven research into the other non-psychotropic phytocannabinoids present in cannabis. This chapter presents an overview of the molecular pharmacology of the seven most thoroughly investigated phytocannabinoids, namely Δ9-tetrahydrocannabinol, Δ9-tetrahydrocannabivarin, cannabinol, cannabidiol, cannabidivarin, cannabigerol, and cannabichromene. The targets of these phytocannabinoids are defined both within the endocannabinoid system and beyond. The pharmacological effect of each individual phytocannabinoid is important in the overall therapeutic and recreational effect of cannabis and slight structural differences can elicit diverse and competing physiological effects. The proportion of each phytocannabinoid can be influenced by various factors such as growing conditions and extraction methods. It is therefore important to investigate the pharmacology of these seven phytocannabinoids further, and characterise the large number of other phytocannabinoids in order to better understand their contributions to the therapeutic and recreational effects claimed for the whole cannabis plant and its extracts.

Keywords

Phytocannabinoid Molecular pharmacology Cannabis Molecular targets 

Notes

Acknowledgements

We would like to thank Prof. Simon Gibbons for providing the figures of the phytocannabinoid structures.

References

  1. 1.
    Elsohly M, Gul W (2014) Constituents of Cannabis sativa. In: Pertwee RG (ed) Handbook of Cannabis. Oxford University Press, Oxford, pp 3–22CrossRefGoogle Scholar
  2. 2.
    Hill TDM, Cascio MG, Romano B, Duncan M, Pertwee RG, Williams CM, Whalley BJ, Hill AJ (2013) Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism. Br J Pharmacol 170:679CrossRefGoogle Scholar
  3. 3.
    Li H-L (1974) An archaeological and historical account of Cannabis in China. Econ Bot 28:437CrossRefGoogle Scholar
  4. 4.
    Touw M (1981) The religious and medicinal use of Cannabis in China, India and Tibet. J Psychoactive Drugs 13:23CrossRefGoogle Scholar
  5. 5.
    Gaoni Y, Mechoulam R (1971) The isolation and structure of delta-1-tetrahydrocannabinol and other neutral cannabinoids from hashish. J Am Chem Soc 93:217CrossRefGoogle Scholar
  6. 6.
    Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561CrossRefGoogle Scholar
  7. 7.
    Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946CrossRefGoogle Scholar
  8. 8.
    Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83CrossRefGoogle Scholar
  9. 9.
    Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89CrossRefGoogle Scholar
  10. 10.
    Baker D, Pryce G, Giovannoni G, Thompson AJ (2003) The therapeutic potential of Cannabis. Lancet Neurol 2:291CrossRefGoogle Scholar
  11. 11.
    Noyes R, Brunk SF, Avery DA, Canter AC (1975) The analgesic properties of delta-9-tetrahydrocannabinol and codeine. Clin Pharmacol Ther 18:84CrossRefGoogle Scholar
  12. 12.
    Martin WJ, Coffin PO, Attias E, Balinsky M, Tsou K, Walker JM (1999) Anatomical basis for cannabinoid-induced antinociception as revealed by intracerebral microinjections. Brain Res 822:237CrossRefGoogle Scholar
  13. 13.
    Darmani NA (2001) Delta-9-tetrahydrocannabinol differentially suppresses cisplatin-induced emesis and indices of motor function via cannabinoid CB1 receptors in the least shrew. Pharmacol Biochem Behav 69:239CrossRefGoogle Scholar
  14. 14.
    Tramèr MR, Carroll D, Campbell FA, Reynolds DJ, Moore RA, McQuay HJ (2001) Cannabinoids for control of chemotherapy induced nausea and vomiting: quantitative systematic review. BMJ 323:16CrossRefGoogle Scholar
  15. 15.
    Westfall RE, Janssen PA, Lucas P, Capler R (2006) Survey of medicinal Cannabis use among childbearing women: patterns of its use in pregnancy and retroactive self-assessment of its efficacy against “morning sickness”. Complement Ther Clin Pract 12:27CrossRefGoogle Scholar
  16. 16.
    O’Shaugnessy WB (1840) On the preparations of the Indian hemp, or gunjah (Cannabis indica). Trans Med Phys Soc Bengal 5:71Google Scholar
  17. 17.
    Lozano I (1997) Therapeutic use of Cannibis sativa L. in Arab medicine. Asclepio 49:199CrossRefGoogle Scholar
  18. 18.
    Porter BE, Jacobson C (2013) Report of a parent survey of cannabidiol-enriched Cannabis use in pediatric treatment-resistant epilepsy. Epilepsy Behav 29:574CrossRefGoogle Scholar
  19. 19.
    Ellison JM, Gelwan E, Ogletree J (1990) Complex partial seizure symptoms affected by marijuana abuse. J Clin Psychiatry 51:439Google Scholar
  20. 20.
    Grinspoon L, Bakalar JB (1997) Marihuana, the forbidden medicine. Yale University Press, New Haven, CTGoogle Scholar
  21. 21.
    Consroe PF, Wood GC, Buchsbaum H (1975) Anticonvulsant nature of marihuana smoking. JAMA 234:306CrossRefGoogle Scholar
  22. 22.
    Lal S, Prasad N, Ryan M, Tangri S, Silverberg MS, Gordon A, Steinhart H (2011) Cannabis use amongst patients with inflammatory bowel disease. Eur J Gastroenterol Hepatol 23:891CrossRefGoogle Scholar
  23. 23.
    Deiana S, Watanabe A, Yamasaki Y, Amada N, Arthur M, Fleming S, Woodcock H, Dorward P, Pigliacampo B, Close S, Platt B, Riedel G (2012) Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarin (CBDV), delta(9)-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive-compulsive behavior. Psychopharmacology 219:859CrossRefGoogle Scholar
  24. 24.
    Howlett AC, Qualy JM, Khachatrian LL (1986) Involvement of Gi in the inhibition of adenylate cyclase by cannabimimetic drugs. Mol Pharmacol 29:307Google Scholar
  25. 25.
    Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A 87:1932CrossRefGoogle Scholar
  26. 26.
    Felder CC, Veluz JS, Williams HL, Briley EM, Matsuda LA (1992) Cannabinoid agonists stimulate both receptor- and non-receptor-mediated signal transduction pathways in cells transfected with and expressing cannabinoid receptor clones. Mol Pharmacol 42:838Google Scholar
  27. 27.
    Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161CrossRefGoogle Scholar
  28. 28.
    Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605Google Scholar
  29. 29.
    Pertwee RG (1999) Pharmacology of cannabinoid receptor ligands. Curr Med Chem 6:635Google Scholar
  30. 30.
    Pertwee RG (2005) Pharmacological actions of cannabinoids. Handb Exp Pharmacol 168:1CrossRefGoogle Scholar
  31. 31.
    Martin BR, Compton DR, Thomas BF, Prescott WR, Little PJ, Razdan RK, Johnson MR, Melvin LS, Mechoulam R, Ward SJ (1991) Behavioral, biochemical, and molecular modeling evaluations of cannabinoid analogs. Pharmacol Biochem Behav 40:471CrossRefGoogle Scholar
  32. 32.
    Varvel SA, Bridgen DT, Tao Q, Thomas BF, Martin BR, Lichtman AH (2005) Delta9-tetrahydrocannabinol accounts for the antinociceptive, hypothermic, and cataleptic effects of marijuana in mice. J Pharmacol Exp Ther 314:329CrossRefGoogle Scholar
  33. 33.
    Wiley JL, Jefferson RG, Grier MC, Mahadevan A, Razdan RK, Martin BR (2001) Novel pyrazole cannabinoids: insights into CB(1) receptor recognition and activation. J Pharmacol Exp Ther 296:1013Google Scholar
  34. 34.
    Hillard CJ (2000) Endocannabinoids and vascular function. J Pharmacol Exp Ther 294:27Google Scholar
  35. 35.
    Rinaldi-Carmona M, Barth F, Heaulme M, Shire D, Calandra B, Congy C, Martinez S, Maruani J, Neliat G, Caput D, Ferrara P, Soubrie P, Breliere JC, Le Fur G (1994) SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett 350:240CrossRefGoogle Scholar
  36. 36.
    Sharir H, Abood ME (2010) Pharmacological characterization of GPR55, a putative cannabinoid receptor. Pharmacol Ther 126:301CrossRefGoogle Scholar
  37. 37.
    Savinainen JR, Saario SM, Niemi R, Järvinen T, Laitinen JT (2003) An optimized approach to study endocannabinoid signaling: evidence against constitutive activity of rat brain adenosine A1 and cannabinoid CB1 receptors. Br J Pharmacol 140:1451CrossRefGoogle Scholar
  38. 38.
    De Petrocellis L, Bisogno T, Maccarrone M, Davis JB, Finazzi-Agrò A, Di Marzo V (2001) The activity of anandamide at vanilloid VR1 receptors requires facilitated transport across the cell membrane and is limited by intracellular metabolism. J Biol Chem 276:12856CrossRefGoogle Scholar
  39. 39.
    Farrimond JA, Hill AJ, Whalley BJ, Williams CM (2010) Cannabis constituents modulate delta9-tetrahydrocannabinol-induced hyperphagia in rats. Psychopharmacology 210:97CrossRefGoogle Scholar
  40. 40.
    Bayewitch M, Rhee MH, Avidor-Reiss T, Breuer A, Mechoulam R, Vogel Z (1996) (−)-Delta9-tetrahydrocannabinol antagonizes the peripheral cannabinoid receptor-mediated inhibition of adenylyl cyclase. J Biol Chem 271:9902CrossRefGoogle Scholar
  41. 41.
    Bolognini D, Cascio MG, Parolaro D, Pertwee RG (2012) AM630 behaves as a protean ligand at the human cannabinoid CB 2 receptor. Br J Pharmacol 165:2561CrossRefGoogle Scholar
  42. 42.
    Paronis CA, Nikas SP, Shukla VG, Makriyannis A (2012) Delta(9)-tetrahydrocannabinol acts as a partial agonist/antagonist in mice. Behav Pharmacol 23:802CrossRefGoogle Scholar
  43. 43.
    Morrison PD, Zois V, McKeown DA, Lee TD, Holt DW, Powell JF, Kapur S, Murray RM (2009) The acute effects of synthetic intravenous delta9-tetrahydrocannabinol on psychosis, mood and cognitive functioning. Psychol Med 39:1607CrossRefGoogle Scholar
  44. 44.
    Barann M, Molderings G, Brüss M, Bönisch H, Urban BW, Göthert M (2002) Direct inhibition by cannabinoids of human 5-HT3A receptors: probable involvement of an allosteric modulatory site. Br J Pharmacol 137:589CrossRefGoogle Scholar
  45. 45.
    Shi B, Yang R, Wang X, Liu H, Zou L, Hu X, Wu J, Zou A, Liu L (2012) Inhibition of 5-HT3 receptors-activated currents by cannabinoids in rat trigeminal ganglion neurons. J Huazhong Univ Sci Technolog Med Sci 32:265CrossRefGoogle Scholar
  46. 46.
    Aapro MS (1991) 5-HT3 receptor antagonists. An overview of their present status and future potential in cancer therapy-induced emesis. Drugs 42:551CrossRefGoogle Scholar
  47. 47.
    Mitchelson F (1992) Pharmacological agents affecting emesis. A review (Part II). Drugs 43:443CrossRefGoogle Scholar
  48. 48.
    Karim F, Roerig SC, Saphier D (1996) Role of 5-hydroxytryptamine3 (5-HT3) antagonists in the prevention of emesis caused by anticancer therapy. Biochem Pharmacol 52:685CrossRefGoogle Scholar
  49. 49.
    Voog O, Alstergren P, Leibur E, Kallikorm R, Kopp S (2000) Immediate effects of the serotonin antagonist granisetron on temporomandibular joint pain in patients with systemic inflammatory disorders. Life Sci 68:591CrossRefGoogle Scholar
  50. 50.
    Simpson K, Spencer CM, McClellan KJ (2000) Tropisetron: an update of its use in the prevention of chemotherapy-induced nausea and vomiting. Drugs 59:1297CrossRefGoogle Scholar
  51. 51.
    Hejazi N, Zhou C, Oz M, Sun H, Ye JH, Zhang L (2006) Delta9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors. Mol Pharmacol 69:991Google Scholar
  52. 52.
    Betz H, Kuhse J, Schmieden V, Laube B, Kirsch J, Harvey RJ (1999) Structure and functions of inhibitory and excitatory glycine receptors. Ann N Y Acad Sci 868:667CrossRefGoogle Scholar
  53. 53.
    Lynch JW (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 84:1051CrossRefGoogle Scholar
  54. 54.
    Molander A, Soderpalm B (2005) Accumbal strychnine-sensitive glycine receptors: an access point for ethanol to the brain reward system. Alcohol Clin Exp Res 29:27CrossRefGoogle Scholar
  55. 55.
    Molander A, Soderpalm B (2005) Glycine receptors regulate dopamine release in the rat nucleus accumbens. Alcohol Clin Exp Res 29:17CrossRefGoogle Scholar
  56. 56.
    O’Sullivan SE, Tarling EJ, Bennett AJ, Kendall DA, Randall MD (2005) Novel time-dependent vascular actions of delta9-tetrahydrocannabinol mediated by peroxisome proliferator-activated receptor gamma. Biochem Biophys Res Commun 337:824CrossRefGoogle Scholar
  57. 57.
    O’Sullivan SEO, Kendall DA, Randall MD (2006) Further characterization of the time-dependent vascular effects of delta-9-tetrahydrocannabinol. J Pharmacol Exp Ther 317:428Google Scholar
  58. 58.
    Vara D, Morell C, Rodríguez-Henche N, Diaz-Laviada I (2013) Involvement of PPARγ in the antitumoral action of cannabinoids on hepatocellular carcinoma. Cell Death Dis 4:618CrossRefGoogle Scholar
  59. 59.
    Ferre P (2004) The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes 53:43CrossRefGoogle Scholar
  60. 60.
    Rangwala SM, Lazar MA (2004) Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. Trends Pharmacol Sci 25:331CrossRefGoogle Scholar
  61. 61.
    Alarcon de la Lastra C, Sanchez-Fidalgo S, Villegas I, Motilva V (2004) New pharmacological perspectives and therapeutic potential of PPAR-gamma agonists. Curr Pharm Des 10:3505CrossRefGoogle Scholar
  62. 62.
    McHugh D, Page J, Dunn E, Bradshaw HB (2012) Δ9 tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells. Br J Pharmacol 165:2414Google Scholar
  63. 63.
    McHugh D, Roskowski D, Xie S, Bradshaw HB (2014) Delta(9)-THC and N-arachidonoyl glycine regulate BV-2 microglial morphology and cytokine release plasticity: implications for signaling at GPR18. Front Pharmacol 4:162CrossRefGoogle Scholar
  64. 64.
    Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588CrossRefGoogle Scholar
  65. 65.
    Pertwee RG (1972) The ring test: a quantitative method for assessing the “cataleptic” effect of Cannabis in mice. Br J Pharmacol 46:753CrossRefGoogle Scholar
  66. 66.
    Yin H, Chu A, Li W, Wang B, Shelton F, Otero F, Nguyen DG, Caldwell JS, Chen YA (2009) Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. J Biol Chem 284:12328CrossRefGoogle Scholar
  67. 67.
    Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092CrossRefGoogle Scholar
  68. 68.
    Kapur A, Zhao P, Sharir H, Bai Y, Caron MG, Barak LS, Abood ME (2009) Atypical responsiveness of the orphan receptor GPR55 to cannabinoid ligands. J Biol Chem 284:29817CrossRefGoogle Scholar
  69. 69.
    Anavi-Goffer S, Baillie G, Irving AJ, Gertsch J, Greig IR, Pertwee RG, Ross R (2012) Modulation of l-α-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids. J Biol Chem 287:91Google Scholar
  70. 70.
    Bolognini D, Costa B, Maione S, Comelli F, Marini P, Di Marzo V, Parolaro D, Ross RA, Gauson LA, Cascio MG, Pertwee RG (2010) The plant cannabinoid delta9-tetrahydrocannabivarin can decrease signs of inflammation and inflammatory pain in mice. Br J Pharmacol 160:677CrossRefGoogle Scholar
  71. 71.
    Garcia C, Palomo-Garo C, Garcia-Arencibia M, Ramos J, Pertwee R, Fernandez-Ruiz J (2011) Symptom-relieving and neuroprotective effects of the phytocannabinoid delta(9)-THCV in animal models of Parkinson’s disease. Br J Pharmacol 163:1495CrossRefGoogle Scholar
  72. 72.
    Pertwee RG, Thomas A, Stevenson LA, Ross RA, Varvel SA, Lichtman AH, Martin BR, Razdan RK (2007) The psychoactive plant cannabinoid, delta9-tetrahydrocannabinol, is antagonized by delta8- and delta9-tetrahydrocannabivarin in mice in vivo. Br J Pharmacol 150:586CrossRefGoogle Scholar
  73. 73.
    Thomas A, Stevenson LA, Wease KN, Price MR, Baillie G, Ross RA, Pertwee RG (2005) Evidence that the plant cannabinoid delta9-tetrahydrocannabivarin is a cannabinoid CB1 and CB2 receptor antagonist. Br J Pharmacol 146:917CrossRefGoogle Scholar
  74. 74.
    Dennis I, Whalley BJ, Stephens GJ (2008) Effects of delta9-tetrahydrocannabivarin on [35S]GTPgammaS binding in mouse brain cerebellum and piriform cortex membranes. Br J Pharmacol 154:1349CrossRefGoogle Scholar
  75. 75.
    Pertwee RG, Griffin G, Lainton JA, Huffman JW (1995) Pharmacological characterization of three novel cannabinoid receptor agonists in the mouse isolated vas deferens. Eur J Pharmacol 284:241CrossRefGoogle Scholar
  76. 76.
    Ma Y-L, Weston SE, Whalley BJ, Stephens GJ (2008) The phytocannabinoid delta9-tetrahydrocannabivarin modulates inhibitory neurotransmission in the cerebellum. Br J Pharmacol 154:204CrossRefGoogle Scholar
  77. 77.
    Riedel G, Fadda P, McKillop-Smith S, Pertwee RG, Platt B, Robinson L (2009) Synthetic and plant-derived cannabinoid receptor antagonists show hypophagic properties in fasted and non-fasted mice. Br J Pharmacol 156:1154CrossRefGoogle Scholar
  78. 78.
    McPartland JM, Duncan M, Di Marzo V, Pertwee RG (2015) Are cannabidiol and Δ(9)-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol 172:737Google Scholar
  79. 79.
    De Petrocellis L, Vellani V, Schiano-Moriello A, Marini P, Magherini PC, Orlando P, Di Marzo V (2008) Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8. J Pharmacol Exp Ther 325:1007CrossRefGoogle Scholar
  80. 80.
    De Petrocellis L, Ligresti A, Moriello AS, Allara M, Bisogno T, Petrosino S, Stott CG, Di Marzo V (2011) Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol 163:1479CrossRefGoogle Scholar
  81. 81.
    De Petrocellis L, Orlando P, Moriello AS, Aviello G, Stott C, Izzo AA, Di Marzo V (2012) Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation. Acta Physiol 204:255CrossRefGoogle Scholar
  82. 82.
    Billeter AT, Hellmann JL, Bhatnagar A, Polk HC (2014) Transient receptor potential ion channels: powerful regulators of cell function. Ann Surg 259:229CrossRefGoogle Scholar
  83. 83.
    Moreira FA, Grieb M, Lutz B (2009) Central side-effects of therapies based on CB1 cannabinoid receptor agonists and antagonists: focus on anxiety and depression. Best Pract Res Clin Endocrinol Metab 23:133CrossRefGoogle Scholar
  84. 84.
    Harvey DJ (1990) Stability of cannabinoids in dried samples of cannabis dating from around 1896–1905. J Ethnopharmacol 28:117CrossRefGoogle Scholar
  85. 85.
    Rhee MH, Vogel Z, Barg J, Bayewitch M, Levy R, Hanuš L, Breuer A, Mechoulam R (1997) Cannabinol derivatives: binding to cannabinoid receptors and inhibition of adenylylcyclase. J Med Chem 40:3228CrossRefGoogle Scholar
  86. 86.
    Showalter VM, Compton DR, Martin BR, Abood ME (1996) Evaluation of binding in a transfected cell line expressing a peripheral cannabinoid receptor (CB2): identification of cannabinoid receptor subtype selective ligands. J Pharmacol Exp Ther 278:989Google Scholar
  87. 87.
    Felder CC, Joyce KE, Briley EM, Mansouri J, Mackie K, Blond O, Lai Y, Ma AL, Mitchell RL (1995) Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol Pharmacol 48:443Google Scholar
  88. 88.
    MacLennan SJ, Reynen PH, Kwan J, Bonhaus DW (1998) Evidence for inverse agonism of SR141716A at human recombinant cannabinoid CB1 and CB2 receptors. Br J Pharmacol 124:619CrossRefGoogle Scholar
  89. 89.
    Kenakin T (1995) Inverse, protean, and ligand-selective agonism: matters of receptor conformation. FASEB J 15:598CrossRefGoogle Scholar
  90. 90.
    Booker L, Naidu PS, Razdan RK, Mahadevan A, Lichtman AH (2009) Evaluation of prevalent phytocannabinoids in the acetic acid model of visceral nociception. Drug Alcohol Depend 105:42CrossRefGoogle Scholar
  91. 91.
    Farrimond JA, Whalley BJ, Williams CM (2012) Cannabinol and cannabidiol exert opposing effects on rat feeding patterns. Psychopharmacology (Berl) 223:117CrossRefGoogle Scholar
  92. 92.
    Salamone JD, McLaughlin PJ, Sink K, Makriyannis A, Parker LA (2007) Cannabinoid CB1 receptor inverse agonists and neutral antagonists: effects on food intake, food-reinforced behavior and food aversions. Physiol Behav 91:383CrossRefGoogle Scholar
  93. 93.
    Carai MAM, Colombo G, Gessa GL (2005) Rimonabant: the first therapeutically relevant cannabinoid antagonist. Life Sci 77:2339CrossRefGoogle Scholar
  94. 94.
    Buckley JL, Rasmussen EB (2014) Rimonabant’s reductive effects on high densities of food reinforcement, but not palatability, in lean and obese Zucker rats. Psychopharmacology (Berl) 231:2159CrossRefGoogle Scholar
  95. 95.
    Darmani NA, Pandya DK (2000) Involvement of other neurotransmitters in behaviors induced by the cannabinoid CB1 receptor antagonist SR 141716A in naive mice. J Neural Transm 107:931CrossRefGoogle Scholar
  96. 96.
    Järbe TUC, Andrzejewski ME, DiPatrizio NV (2002) Interactions between the CB1 receptor agonist Δ9-THC and the CB1 receptor antagonist SR-141716 in rats: open-field revisited. Pharmacol Biochem Behav 73:911CrossRefGoogle Scholar
  97. 97.
    Parker LA, Mechoulam R, Schlievert C, Abbott L, Fudge ML, Burton P (2003) Effects of cannabinoids on lithium-induced conditioned rejection reactions in a rat model of nausea. Psychopharmacology (Berl) 166:156CrossRefGoogle Scholar
  98. 98.
    Darmani NA (2001) Delta-9-Tetrahydrocannabinol and synthetic cannabinoids prevent emesis produced by the cannabinoid CB1 receptor antagonist/inverse agonist SR 141716A. Neuropsychopharmacology 24:198Google Scholar
  99. 99.
    Després J-P, Golay A, Sjöström L (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353:2121CrossRefGoogle Scholar
  100. 100.
    Taglialatela-Scafati O, Pagani A, Scala F, De Petrocellis L, Di Marzo V, Grassi G (2010) Cannabimovone, a cannabinoid with a rearranged terpenoid skeleton from hemp. Eur J Org Chem 11:2023CrossRefGoogle Scholar
  101. 101.
    Elsohly S, Slade D (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78:539CrossRefGoogle Scholar
  102. 102.
    Mechoulam R, Peters M, Murillo-Rodriguez E, Hanus LO (2007) Cannabidiol-recent advances. Chem Biodivers 4:1678CrossRefGoogle Scholar
  103. 103.
    Izzo AA, Borrelli F, Capasso R, Di Marzo V, Mechoulam R (2009) Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci 30:515CrossRefGoogle Scholar
  104. 104.
    Thomas A, Baillie GL, Phillips AM, Razdan RK, Ross RA, Pertwee RG (2007) Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol 150:613CrossRefGoogle Scholar
  105. 105.
    McPartland JM, Glass M, Pertwee RG (2007) Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: interspecies differences. Br J Pharmacol 152:583CrossRefGoogle Scholar
  106. 106.
    Laprairie RB, Bagher AM, Kelly MEM, Denovan-Wright EM (2015) Cannabidiol is a negative allosteric modulator of the type 1 cannabinoid receptor. Br J Pharmacol 172:4790Google Scholar
  107. 107.
    Keov P, Sexton PM, Christopoulos A (2011) Allosteric modulation of G protein-coupled receptors: a pharmacological perspective. Neuropharmacology 60:24CrossRefGoogle Scholar
  108. 108.
    Price MR, Baillie GL, Thomas A, Stevenson LA, Easson M, Goodwin R, McLean A, McIntosh L, Goodwin G, Walker G, Westwood P, Marrs J, Thomson F, Cowley P, Christopoulos A, Pertwee RG, Ross RA (2005) Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol 68:1484CrossRefGoogle Scholar
  109. 109.
    Horswill JG, Bali U, Shaaban S, Keily JF, Jeevaratnam P, Babbs AJ, Reynet C, Wong Kai In P (2007) PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats. Br J Pharmacol 152:805CrossRefGoogle Scholar
  110. 110.
    Wang X, Horswill JG, Whalley BJ, Stephens GJ (2011) Effects of the allosteric antagonist 1-(4-chlorophenyl)-3-[3-(6-pyrrolidin-1-ylpyridin-2-yl)phenyl]urea (PSNCBAM-1) on CB1 receptor modulation in the cerebellum. Mol Pharmacol 79:758CrossRefGoogle Scholar
  111. 111.
    Ahn KH, Mahmoud MM, Shim J-Y, Kendall DA (2013) Distinct roles of beta-arrestin 1 and beta-arrestin 2 in ORG27569-induced biasedsignaling and internalization of the cannabinoid receptor 1 (CB1). J Biol Chem 288:9790CrossRefGoogle Scholar
  112. 112.
    Cawston EE, Redmond WJ, Breen CM, Grimsey NL, Connor M, Glass M (2013) Real-time characterization of cannabinoid receptor 1 (CB1) allosteric modulators reveals novel mechanism of action. Br J Pharmacol 170:893CrossRefGoogle Scholar
  113. 113.
    Russo E, Guy GW (2005) A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses 66:234CrossRefGoogle Scholar
  114. 114.
    Sylantyev S, Jensen TP, Ross RA, Rusakov DA (2013) Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci U S A 110:5193CrossRefGoogle Scholar
  115. 115.
    Whyte LS, Ryberg E, Sims NA, Ridge SA, Mackie K, Greasley PJ, Ross RA, Rogers MJ (2009) The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci U S A 106:16511CrossRefGoogle Scholar
  116. 116.
    Carrier EJ, Auchampach JA, Hillard CJ (2006) Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci U S A 103:7895CrossRefGoogle Scholar
  117. 117.
    Ahrens J, Demir R, Leuwer M, De La Roche J, Krampfl K, Foadi N, Karst M, Haeseler G (2009) The nonpsychotropic cannabinoid cannabidiol modulates and directly activates alpha-1 and alpha-1-beta glycine receptor function. Pharmacology 83:217CrossRefGoogle Scholar
  118. 118.
    Xiong W, Cui T, Cheng K, Yang F, Chen SR, Willenbring D, Guan Y, Pan HL, Ren K, Xu Y, Zhang L (2012) Cannabinoids suppress inflammatory and neuropathic pain by targeting alpha 3 glycine receptors. J Exp Med 209:1121CrossRefGoogle Scholar
  119. 119.
    Liou GI, Auchampach JA, Hillard CJ, Zhu G, Yousufzai B, Mian S, Khan S, Khalifa Y (2008) Mediation of cannabidiol anti-inflammation in the retina by equilibrative nucleoside transporter and A2A adenosine receptor. Investig Ophthalmol Vis Sci 49:5526CrossRefGoogle Scholar
  120. 120.
    Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Vitoretti LB, Mariano-Souza DP, Quinteiro-Filho WM, Akamine AT, Almeida VI, Quevedo J, Dal-Pizzol F, Hallak JE, Zuardi AW, Crippa JA, Palermo-Neto J (2012) Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A2A receptor. Eur J Pharmacol 678:78CrossRefGoogle Scholar
  121. 121.
    Gonca E, Darici F (2014) The effect of cannabidiol on ischemia/reperfusion-induced ventricular arrhythmias: the role of adenosine A1 receptors. J Cardiovasc Pharmacol Ther 20:76CrossRefGoogle Scholar
  122. 122.
    Russo EB, Burnett A, Hall B, Parker KK (2005) Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem Res 30:1037CrossRefGoogle Scholar
  123. 123.
    Rock EM, Bolognini D, Limebeer CL, Cascio MG, Anavi-Goffer S, Fletcher PJ, Mechoulam R, Pertwee RG, Parker LA (2012) Cannabidiol, a nonpsychotropic component of cannabis, attenuates vomiting and nausea-like behaviour via indirect agonism of 5-HT1A somatodendritic autoreceptors in the dorsal raphe nucleus. Br J Pharmacol 165:2620CrossRefGoogle Scholar
  124. 124.
    Resstel LB, Tavares RF, Lisboa SF, Joca SR, Correa FM, Guimaraes FS (2009) 5-HT1A receptors are involved in the cannabidiol-induced attenuation of behavioral and cardiovascular responses to acute restraint stress in rats. Br J Pharmacol 156:181CrossRefGoogle Scholar
  125. 125.
    Soares Vde P, Campos AC, Bortoli VC, Zangrossi H Jr, Guimaraes FS, Zuardi AW (2010) Intra-dorsal periaqueductal gray administration of cannabidiol blocks panic-like response by activating 5-HT1A receptors. Behav Brain Res 213:225CrossRefGoogle Scholar
  126. 126.
    Zanelati TV, Biojone C, Moreira FA, Guimaraes FS, Joca SR (2010) Antidepressant-like effects of cannabidiol in mice: possible involvement of 5-HT1A receptors. Br J Pharmacol 159:122CrossRefGoogle Scholar
  127. 127.
    Kwiatkowska M, Parker LA, Burton P, Mechoulam R (2004) A comparative analysis of the potential of cannabinoids and ondansetron to suppress cisplatin-induced emesis in the Suncus murinus (house musk shrew). Psychopharmacology (Berl) 174:254CrossRefGoogle Scholar
  128. 128.
    Parker LA, Kwiatkowska M, Burton P, Mechoulam R (2004) Effect of cannabinoids on lithium-induced vomiting in the Suncus murinus (house musk shrew). Psychopharmacology (Berl) 171:156CrossRefGoogle Scholar
  129. 129.
    Mishima K, Hayakawa K, Abe K, Ikeda T, Egashira N, Iwasaki K, Fujiwara M (2005) Cannabidiol prevents cerebral infarction via a serotonergic 5-hydroxytryptamine1A receptor-dependent mechanism. Stroke 36:1077CrossRefGoogle Scholar
  130. 130.
    Savitz J, Lucki I, Drevets WC (2009) 5-HT1A receptor function in major depressive disorder. Prog Neurobiol 88:17CrossRefGoogle Scholar
  131. 131.
    Sargent PA, Kjaer KH, Bench CJ, Rabiner EA, Messa C, Meyer J, Gunn RN, Grasby PM, Cowen PJ (2000) Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Arch Gen Psychiatry 57:174CrossRefGoogle Scholar
  132. 132.
    Szewczyk B, Albert PR, Burns AM, Czesak M, Overholser JC, Jurjus GJ, Meltzer HY, Konick LC, Dieter L, Herbst N, May W, Rajkowska G, Stockmeier CA, Austin MC (2009) Gender-specific decrease in NUDR and 5-HT1A receptor proteins in the prefrontal cortex of subjects with major depressive disorder. Int J Neuropsychopharmacol 12:155CrossRefGoogle Scholar
  133. 133.
    Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730CrossRefGoogle Scholar
  134. 134.
    Hayakawa K, Mishima K, Abe K, Hasebe N, Takamatsu F, Yasuda H, Ikeda T, Inui K, Egashira N, Iwasaki K, Fujiwara M (2004) Cannabidiol prevents infarction via the non-CB1 cannabinoid receptor mechanism. Neuroreport 15:2381CrossRefGoogle Scholar
  135. 135.
    Yang K-H, Galadari S, Isaev D, Petroianu G, Shippenberg TS, Oz M (2010) The nonpsychoactive cannabinoid cannabidiol inhibits 5-hydroxytryptamine3A receptor-mediated currents in Xenopus laevis oocytes. J Pharmacol Exp Ther 333:547CrossRefGoogle Scholar
  136. 136.
    Bisogno T, Hanus L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, Moriello AS, Davis JB, Mechoulam R, Di Marzo V (2001) Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 134:845CrossRefGoogle Scholar
  137. 137.
    Ligresti A, Moriello AS, Starowicz K, Matias I, Pisanti S, De Petrocellis L, Laezza C, Portella G, Bifulco M, Di Marzo V (2006) Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J Pharmacol Exp Ther 318:1375CrossRefGoogle Scholar
  138. 138.
    Qin N, Neeper MP, Liu Y, Hutchinson TL, Lubin ML, Flores CM (2008) TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J Neurosci 28:6231CrossRefGoogle Scholar
  139. 139.
    Iannotti FA, Hill CL, Leo A, Alhusaini A, Soubrane C, Mazzarella E, Russo E, Whalley BJ, Di Marzo V, Stephens GJ (2014) Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS Chem Neurosci 5:1131CrossRefGoogle Scholar
  140. 140.
    Maione S, Piscitelli F, Gatta L, Vita D, De Petrocellis L, Palazzo E, de Novellis V, Di Marzo V (2011) Non-psychoactive cannabinoids modulate the descending pathway of antinociception in anaesthetized rats through several mechanisms of action. Br J Pharmacol 162:584CrossRefGoogle Scholar
  141. 141.
    GW Pharmaceuticals Press Release (2015) http://www.gwpharm.com/news.aspx
  142. 142.
    Insys Therapeutics, Inc. Cannabidiol oral solution 2015. http://www.insysrx.com/products/cannabidiol-oral-solution-cbd/
  143. 143.
    Novagant Golden CBDTM (2015) http://www.novagant.com/goldencbd/
  144. 144.
    Hill AJ, Mercier MS, Hill TDM, Glyn SE, Jones NA, Yamasaki Y, Futamura T, Duncan M, Stott CG, Stephens GJ, Williams CM, Whalley BJ (2012) Cannabidivarin is anticonvulsant in mouse and rat. Br J Pharmacol 167:1629CrossRefGoogle Scholar
  145. 145.
    Amada N, Yamasaki Y, Williams CM, Whalley BJ (2013) Cannabidivarin (CBDV) suppresses pentylenetetrazole (PTZ)-induced increases in epilepsy-related gene expression. PeerJ 1:214CrossRefGoogle Scholar
  146. 146.
    Potter D (2009) The propagation, characterisation and optimisation of Cannabis sativa L. as a phytopharmaceutical. PhD thesis, King’s College London, pp 17–18Google Scholar
  147. 147.
    Fellermeier M, Eisenreich W, Bacher A, Zenk MH (2001) Biosynthesis of cannabinoids. Incorporation experiments with 13C-labeled glucoses. Eur J Biochem 268:1596CrossRefGoogle Scholar
  148. 148.
    Taura F, Morimoto S, Shoyama Y (1996) Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid. J Biol Chem 271:17411CrossRefGoogle Scholar
  149. 149.
    Gaoni Y, Mechoulam R (1971) The isolation and structure of delta-1-tetrahydrocannabinol and other neutral cannabinoids from hashish. J Am Chem Soc 93:217CrossRefGoogle Scholar
  150. 150.
    De Meijer EP, Bagatta M, Carboni A, Crucitti P, Moliterni VM, Ranalli P, Mandolino G (2003) The inheritance of chemical phenotype in Cannabis sativa L. Genetics 163:335Google Scholar
  151. 151.
    Turner CE, Elsohly MA, Boeren EG (1980) Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J Nat Prod 43:169CrossRefGoogle Scholar
  152. 152.
    Grunfeld Y, Edery H (1969) Psychopharmacological activity of the active constituents of hashish and some related cannabinoids. Psychopharmacologica 14:200CrossRefGoogle Scholar
  153. 153.
    Cascio MG, Gauson LA, Stevenson LA, Ross RA, Pertwee RG (2010) Evidence that the plant cannabinoid cannabigerol is a highly potent α2 adrenoceptor agonist and moderately potent 5HT1A receptor antagonist. Br J Pharmacol 159:129Google Scholar
  154. 154.
    Rock EM, Goodwin JM, Limebeer CL, Breuer A, Pertwee RG, Mechoulam R, Parker LA (2011) Interaction between non-psychotropic cannabinoids in marihuana: effect of cannabigerol (CBG) on the anti-nausea or anti-emetic effects of cannabidiol (CBD) in rats and shrews. Psychopharmacology (Berl) 215:505CrossRefGoogle Scholar
  155. 155.
    Russo EB (2011) Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br J Pharmacol 163:1344CrossRefGoogle Scholar
  156. 156.
    Shinjyo N, Di Marzo V (2013) The effect of cannabichromene on adult neural stem/progenitor cells. Neurochem Int 63:432CrossRefGoogle Scholar
  157. 157.
    McPartland JM, Matias I, Di Marzo V, Glass M (2006) Evolutionary origins of the endocannabinoid system. Gene 370:64CrossRefGoogle Scholar
  158. 158.
    Iwamura H, Suzuki H, Ueda Y, Kaya T, Inaba T (2001) In vitro and in vivo pharmacological characterization of JTE-907, a novel selective ligand for cannabinoid CB2 receptor. J Pharmacol Exp Ther 296:420Google Scholar
  159. 159.
    Rosenthaler S, Pöhn B, Kolmanz C, Nguyen Huu C, Krewenka C, Huber A, Kranner B, Rausch W-D, Moldzio R (2014) Differences in receptor binding affinity of several phytocannabinoids do not explain their effects on neural cell cultures. Neurotoxicol Teratol 46:49CrossRefGoogle Scholar
  160. 160.
    Hill AJ, Weston SE, Jones NA, Smith I, Bevan SA, Williamson EM, Stephens GJ, Williams CM, Whalley BJ (2010) Delta(9)-tetrahydrocannabivarin suppresses in vitro epileptiform and in vivo seizure activity in adult rats. Epilepsia 51:1522CrossRefGoogle Scholar
  161. 161.
    Thomas BF, Gilliam AF, Burch DF, Roche MJ, Seltzman HH (1998) Comparative receptor binding analyses of cannabinoid agonists and antagonists. J Pharmacol Exp Ther 285:285Google Scholar
  162. 162.
    Nye JS, Seltzman HH, Pitt CG, Snyder SH (1985) High-affinity cannabinoid binding sites in brain membranes labeled with [3H]-5′-trimethylammonium delta 8-tetrahydrocannabinol. J Pharmacol Exp Ther 234:784Google Scholar
  163. 163.
    Compton DR, Rice KC, De Costa BR, Razdan RK, Melvin LS, Johnson MR, Martin BR (1993) Cannabinoid structure-activity relationships: correlation of receptor binding and in vivo activities. J Pharmacol Exp Ther 265:218Google Scholar
  164. 164.
    Jones NA, Hill AJ, Smith I, Bevan SA, Williams CM, Whalley BJ, Stephens GJ (2010) Cannabidiol displays antiepileptiform and antiseizure properties in vitro and in vivo. J Pharmacol Exp Ther 332:569CrossRefGoogle Scholar
  165. 165.
    Lauckner JE, Jensen JB, Chen H-Y, Lu H-C, Hille B, Mackie K (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci U S A 105:2699CrossRefGoogle Scholar
  166. 166.
    O’Sullivan SE, Sun Y, Bennett AJ, Randall MD, Kendall DA (2009) Time-dependent vascular actions of cannabidiol in the rat aorta. Eur J Pharmacol 612:61CrossRefGoogle Scholar
  167. 167.
    Yamaori S, Kushihara M, Yamamoto I, Watanabe K (2010) Characterization of major phytocannabinoids, cannabidiol and cannabinol, as isoform-selective and potent inhibitors of human CYP1 enzymes. Biochem Pharmacol 79:1691CrossRefGoogle Scholar
  168. 168.
    Yamaori S, Koeda K, Kushihara M, Hada Y, Yamamoto I, Watanabe K (2011) Comparison in the in vitro inhibitory effects of major phytocannabinoids and polycyclic aromatic hydrocarbons contained in marijuana smoke on cytochrome P450 2C9 activity. Drug Metab Pharmacokinet 27:294CrossRefGoogle Scholar
  169. 169.
    Cascio MG, Zamberletti E, Marini P, Parolaro D, Pertwee RG (2015) The phytocannabinoid, delta-9-tetrahydrocannabivarin, can act through 5-HT1A receptors to produce antipsychotic effects. Br J Pharmacol 172:1305CrossRefGoogle Scholar
  170. 170.
    Fišar Z, Singh N, Hroudová J (2014) Cannabinoid-induced changes in respiration of brain mitochondria. Toxicol Lett 231:62CrossRefGoogle Scholar
  171. 171.
    Jiang R, Yamaori S, Okamoto Y, Yamamoto I, Watanabe K (2013) Cannabidiol is a potent inhibitor of the catalytic activity of cytochrome P450 2C19. Drug Metab Pharmacokinet 28:332CrossRefGoogle Scholar
  172. 172.
    Yamaori S, Ebisawa J, Okushima Y, Yamamoto I, Watanabe K (2011) Potent inhibition of human cytochrome P450 3A isoforms by cannabidiol: role of phenolic hydroxy groups in the resorcinol moiety. Life Sci 88:730CrossRefGoogle Scholar
  173. 173.
    Ross HR, Napier I, Connor M (2008) Inhibition of recombinant human T-type calcium channels by delta9-tetrahydrocannabinol and cannabidiol. J Biol Chem 283:16124CrossRefGoogle Scholar
  174. 174.
    Nabissi M, Morelli MB, Santoni M, Santoni G (2013) Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents. Carcinogenesis 34:48CrossRefGoogle Scholar
  175. 175.
    Pandolfo P, Silveirinha V, Dos Santos-Rodrigues A, Venance L, Ledent C, Takahashi RN, Cunha RA, Köfalvi A (2011) Cannabinoids inhibit the synaptic uptake of adenosine and dopamine in the rat and mouse striatum. Eur J Pharmacol 655:38CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Sarah E. Turner
    • 1
  • Claire M. Williams
    • 1
  • Leslie Iversen
    • 2
    Email author
  • Benjamin J. Whalley
    • 3
  1. 1.School of Psychology and Clinical Language Sciences and School of PharmacyUniversity of ReadingReadingUK
  2. 2.Department of PharmacologyOxford UniversityOxfordUK
  3. 3.School of PharmacyUniversity of ReadingReadingUK

Personalised recommendations