Phytochemistry of Cannabis sativa L.

Part of the Progress in the Chemistry of Organic Natural Products book series (POGRCHEM, volume 103)


Cannabis (Cannabis sativa, or hemp) and its constituents—in particular the cannabinoids—have been the focus of extensive chemical and biological research for almost half a century since the discovery of the chemical structure of its major active constituent, Δ9-tetrahydrocannabinol (Δ9-THC). The plant’s behavioral and psychotropic effects are attributed to its content of this class of compounds, the cannabinoids, primarily Δ9-THC, which is produced mainly in the leaves and flower buds of the plant. Besides Δ9-THC, there are also non-psychoactive cannabinoids with several medicinal functions, such as cannabidiol (CBD), cannabichromene (CBC), and cannabigerol (CBG), along with other non-cannabinoid constituents belonging to diverse classes of natural products. Today, more than 560 constituents have been identified in cannabis. The recent discoveries of the medicinal properties of cannabis and the cannabinoids in addition to their potential applications in the treatment of a number of serious illnesses, such as glaucoma, depression, neuralgia, multiple sclerosis, Alzheimer’s, and alleviation of symptoms of HIV/AIDS and cancer, have given momentum to the quest for further understanding the chemistry, biology, and medicinal properties of this plant.

This contribution presents an overview of the botany, cultivation aspects, and the phytochemistry of cannabis and its chemical constituents. Particular emphasis is placed on the newly-identified/isolated compounds. In addition, techniques for isolation of cannabis constituents and analytical methods used for qualitative and quantitative analysis of cannabis and its products are also reviewed.


Botany of Cannabis sativa Definitions of cannabis and cannabinoids Outdoor cultivation Indoor cultivation Propagation Micropropagation Chemotaxonomy Biosynthesis Cannabinoids from C. sativa Non-cannabinoids from C. sativa Analytical methods HPLC UPLC GC/FID GC/MS HPTLC 


  1. 1.
    Merlin MD (2003) Archaeological evidence for the tradition of psychoactive plant use in the old world. Econ Bot 57:295CrossRefGoogle Scholar
  2. 2.
    Jiang HE, Li X, Zhao YX, Ferguson DK, Hueber F, Bera S, Wang YF, Zhao LC, Liu CJ, Li CS (2006) A new insight into Cannabis sativa (Cannabaceae) utilization from 2500-year-old Yanghai Tombs, Xinjiang, China. J Ethnopharmacol 108:414CrossRefGoogle Scholar
  3. 3.
    Kriese U, Schumann E, Weber WE, Beyer M, Brühl L, Matthus B (2004) Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 C. sativa L. genotypes. Euphytica 137:339CrossRefGoogle Scholar
  4. 4.
    Small E, Marcus D (2002) Hemp: a new crop with new uses for North America. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, VA, p 284Google Scholar
  5. 5.
    Doyle E, Spence AA (1995) Cannabis as a medicine? Br J Anaesth 74:359CrossRefGoogle Scholar
  6. 6.
    Zuardi AW (2006) History of Cannabis as a medicine: a review. Braz J Psychiat 28:153Google Scholar
  7. 7.
    Guindon J, Hohmann AG (2009) The endocannabinoid system and pain. Curr Drug Targets CNS Neurol Disord 8:403CrossRefGoogle Scholar
  8. 8.
    Jarvinen T, Pate DW, Laine K (2002) Cannabinoids in the treatment of glaucoma. Pharmacol Ther 95:203CrossRefGoogle Scholar
  9. 9.
    Slatkin NE (2007) Cannabinoids in the treatment of chemotherapy-induced nausea and vomiting: beyond prevention of acute emesis. J Support Oncol 5:1Google Scholar
  10. 10.
    Viveros MP, Marco EM (2007) Cannabinoids, anxiety and depression. Recent Prog Med Plants 18:225Google Scholar
  11. 11.
    Liang YC, Huang CC, Hsu KS (2004) Therapeutic potential of cannabinoids in trigeminal neuralgia. Curr Drug Targets CNS Neurol Disord 3:507CrossRefGoogle Scholar
  12. 12.
    Abrams DI, Jay CA, Shade SB, Vizoso H, Reda H, Press S, Kelly ME, Rowbotham MC, Petersen KL (2007) Cannabis in painful HIV-associated sensory neuropathy: a randomized placebo-controlled trial. Neurology 68:515CrossRefGoogle Scholar
  13. 13.
    Pryce G, Baker D (2005) Emerging properties of cannabinoid medicines in management of multiple sclerosis. Trends Neurosci 28:272CrossRefGoogle Scholar
  14. 14.
    Emboden WA (1974) Cannabis, a polytypic genus. Econ Bot 28:304CrossRefGoogle Scholar
  15. 15.
    Hillig KW (2004) A chemotaxonomic analysis of terpenoid variation in Cannabis. Biochem Syst Ecol 32:875CrossRefGoogle Scholar
  16. 16.
    Hillig KW (2005) Genetic evidence for speciation in Cannabis (Cannabaceae). Genet Resour Crop Evol 52:161CrossRefGoogle Scholar
  17. 17.
    Schultes RE, Klein WM, Plowman T, Lockwood TE (1974) Cannabis: an example of taxonomic neglect. Harv Univ Bot Mus Leafl 23:337Google Scholar
  18. 18.
    Serebriakova TY, Sizov IA (1940) Cannabinaceae Lindl. In: Vavilov NI (ed) Kulturnaya Flora SSSR, vol 5. USSR, Moscow-Leningrad, p 1Google Scholar
  19. 19.
    Vavilov NI, Bukinich DD (1929) Zemledel’cheskii Afghanistan. Trudy po Prikladnoi Botanike. Genetike i Selektsii 33:378Google Scholar
  20. 20.
    Small E (1975) American law and the species problem in Cannabis: science and semantics. Bull Narc 27:1Google Scholar
  21. 21.
    Small E (1975) Morphological variation of Cannabis. Can J Bot 53:978CrossRefGoogle Scholar
  22. 22.
    Small E, Cronquist A (1976) A practical and natural taxonomy for Cannabis. Taxon 25:405CrossRefGoogle Scholar
  23. 23.
    Gilmore S, Peakall R, Robertson J (2003) Short tandem repeat (STR) DNA markers are hypervariable and informative in Cannabis sativa: implications for forensic investigations. Forensic Sci Int 131:65CrossRefGoogle Scholar
  24. 24.
    Sakamoto K, Shimomura K, Komeda Y, Kamada H, Satoh S (1995) A male-associated DNA sequence in a dioecious plant, C. sativa L. Plant Cell Physiol 36:1549Google Scholar
  25. 25.
    Mandolino G, Carboni A, Forapani S, Faeti V, Ranalli P (1999) Identification of DNA markers linked to the male sex in dioecious hemp (C. sativa L.). Theor Appl Genet 98:86CrossRefGoogle Scholar
  26. 26.
    Flachowsky H, Schuhmann E, Weber WE, Peil A (2001) Application of AFLP for the detection of sex-specific markers in hemp. Plant Breed 120:305CrossRefGoogle Scholar
  27. 27.
    Törjék O, Bucherna N, Kiss E, Homoki H, Finta-Korpelová Z, Bócsa I, Nagy I, Heszky LE (2002) Novel male-specific molecular markers (MADC5, MADC6) in hemp. Euphytica 127:209CrossRefGoogle Scholar
  28. 28.
    Sakamoto K, Abe T, Matsuyama T, Yoshida S, Ohmido N, Fukui K, Satoh S (2005) RAPD markers encoding retrotransposable elements are linked to the male sex in C. sativa L. Genome 48:931CrossRefGoogle Scholar
  29. 29.
    Techen N, Chandra S, Lata H, ElSohly MA, Khan IA (2010) Genetic identification of female C. sativa plants at early developmental stage. Planta Med 16:1938CrossRefGoogle Scholar
  30. 30.
    U.S. Department of Justice, Drug Enforcement Agency, Office of Diversion Control. Title 21, United States Code (USC) Controlled Substances Act. Accessed 23 Jun 2016
  31. 31.
    Chandra S, Lata H, Khan IA, ElSohly MA (2008) Photosynthetic response of C. sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions. Physiol Mol Biol Plants 14:299CrossRefGoogle Scholar
  32. 32.
    Lata H, Chandra S, Khan IA, ElSohly MA (2009) Thidiazuron induced high frequency direct shoot organogenesis of Cannabis sativa L. In Vitro Cell Dev Biol Plant 45:12CrossRefGoogle Scholar
  33. 33.
    Lata H, Chandra S, Khan IA, ElSohly MA (2010) High frequency plant regeneration from leaf derived callus of high Δ9-tetrahydrocannabinol yielding C. sativa L. Planta Med 76:1629CrossRefGoogle Scholar
  34. 34.
    Faisal M, Anis M (2005) An efficient in vitro method for mass propagation of Tylophora indica. Biol Plant 49:257CrossRefGoogle Scholar
  35. 35.
    Agarwal V, Sardar PR (2006) In vitro propagation of Cassia angustifolia through leaflet and cotyledon derived calli. Biol Plant 50:118CrossRefGoogle Scholar
  36. 36.
    Zayova E, Ivanova RV, Kraptchev B, Stoeva D (2010) Somaclonal variations through indirect organogenesis in egg plant (Solanum melanogena L.). Biodivers Conserv 3:1Google Scholar
  37. 37.
    Ducos JP, Alenton R, Reano JF, Kancnanomai C, Deshayesl A, Petiard V (2003) Agronomic performance of Coffea canephora P. trees derived from large-production in liquid medium. Euphytica 131:215CrossRefGoogle Scholar
  38. 38.
    Magioli C, Mansur E (2005) Eggplant (Solanum melongena L.): tissue culture, genetic transformation and use as an alternative model plant. Acta Bot Bras 19:139CrossRefGoogle Scholar
  39. 39.
    Pospisilova J, Ticha I, Kadlecek P, Haisel D, Plzakova S (1999) Acclimatization of micropropagated plants to ex vitro conditions. Biol Plant 42:481CrossRefGoogle Scholar
  40. 40.
    Chandra S, Lata H, Mehmedic Z, Khan IA, ElSohly MA (2010) Assessment of cannabinoids content in micropropagated plants of Cannabis sativa L. and their comparison with conventionally propagated plants and mother plant during developmental stages of growth. Planta Med 76:743CrossRefGoogle Scholar
  41. 41.
    De Backer B, Debrus B, Lebrun P, Theunis L, Dubois N, Decock L, Verstraete A, Hubert P, Charlier C (2009) Innovative development and validation of an HPLC/DAD method for the qualitative and quantitative determination of major cannabinoids in Cannabis plant material. J Chromatogr B 877:4115CrossRefGoogle Scholar
  42. 42.
    Galal AM, Slade D, Gul W, El-Alfy AT, Ferreira D, ElSohly MA (2009) Naturally occurring and related synthetic cannabinoids and their potential therapeutic applications. Recent Pat CNS Drug Discov 4:112CrossRefGoogle Scholar
  43. 43.
    Bócsa I, Máthé P, Hangyel L (1997) Effect of nitrogen on tetrahydrocannabinol (THC) content in hemp (Cannabis sativa L.) leaves at different positions. J Int Hemp Assoc 4:80Google Scholar
  44. 44.
    De Meijer EPM, Bagatta M, Carboni A, Crucitti P, Moliterni VMC, Ranalli P, Mandolino G (2003) The inheritance of chemical phenotype in C. sativa L. Genetics 163:335Google Scholar
  45. 45.
    Sirikantaramas S, Taura F, Morimoto S, Shoyama Y (2007) Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology. Curr Pharm Biotechnol 8:237CrossRefGoogle Scholar
  46. 46.
    Taura F, Tanaka S, Taguchi C, Fukamizu T, Tanaka H, Shoyama Y, Morimoto S (2009) Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett 583:2061CrossRefGoogle Scholar
  47. 47.
    Flores-Sanchez IJ, Verpoorte R (2008) Secondary metabolism in Cannabis. Phytochem Rev 7:615CrossRefGoogle Scholar
  48. 48.
    Flores-Sanchez IJ, Verpoorte R (2008) PKS activities and biosynthesis of cannabinoids and flavonoids in C. sativa L. plants. Plant Cell Physiol 49:1767CrossRefGoogle Scholar
  49. 49.
    Turner CE, ElSohly MA, Boeren EG (1980) Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J Nat Prod 43:169CrossRefGoogle Scholar
  50. 50.
    Ross SA, ElSohly MA (1995) Constituents of Cannabis sativa L. XXVIII. A review of the natural constituents: 1980–1994. Zagazig J Pharm Sci 4:1Google Scholar
  51. 51.
    ElSohly MA, Slade D (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78:539CrossRefGoogle Scholar
  52. 52.
    Gaoni Y, Mechoulam R (1964) Hashish. III. Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646CrossRefGoogle Scholar
  53. 53.
    Gul W, Carvalho P, Berberich DW, Avery MA, ElSohly MA (2008) (6aR,10aR)-6,6,9-Trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6H-benzo[c]-chromen-1-yl-4-methylbenzenesulfonate. Acta Cryst E64:o1686Google Scholar
  54. 54.
    Ahmed SA, Ross SA, Slade D, Radwan MM, Zulfiqar F, ElSohly MA (2008) Cannabinoid ester constituents from high-potency Cannabis sativa. J Nat Prod 71:536CrossRefGoogle Scholar
  55. 55.
    Zulfiqar F, Ross SA, Slade D, Ahmed SA, Radwan MM, Zulfiquar A, Khan IA, ElSohly MA (2012) Cannabisol, a novel Δ9-THC dimer possessing a unique methylene bridge, isolated from Cannabis sativa. Tetrahedron Lett 53:3560CrossRefGoogle Scholar
  56. 56.
    Radwan MM, ElSohly MA, El-Alfy AT, Ahmed SA, Slade D, Husni AS, Manly SP, Wilson L, Seale S, Cutler SJ, Ross SA (2015) Isolation and pharmacological evaluation of minor cannabinoids from high-potency Cannabis sativa. J Nat Prod 78:1271CrossRefGoogle Scholar
  57. 57.
    Ahmed SA, Ross SA, Slade D, Radwan MM, Khan IA, ElSohly MA (2015) Minor oxygenated cannabinoids from high potency Cannabis sativa L. Phytochemistry 117:194CrossRefGoogle Scholar
  58. 58.
    Hanuŝ L, Krejčí Z (1975) Isolation of two new cannabinoid acids from Cannabis sativa L. of Czechoslovak origin. Acta Univ Palacki Olomuc Fac Med 74:161Google Scholar
  59. 59.
    Hively RL, Mosher WA, Hoffman FW (1966) Isolation of trans-Δ6-tetrahydrocannabinol from marijuana. J Am Chem Soc 8:1832CrossRefGoogle Scholar
  60. 60.
    Gaoni Y, Mechoulam R (1964). Structure and synthesis of cannabigerol, a new hashish constituent. Proc Chem Soc:82Google Scholar
  61. 61.
    Radwan MM, Ross SA, Slade D, Ahmed SA, Zulfiqar F, ElSohly MA (2008) Isolation and characterization of new Cannabis constituents from a high potency variety. Planta Med 74:267CrossRefGoogle Scholar
  62. 62.
    Radwan MM, ElSohly MA, Slade D, Ahmed SA, Ross SA (2009) Biologically active cannabinoids from high potency Cannabis sativa. J Nat Prod 72:906CrossRefGoogle Scholar
  63. 63.
    Appendino G, Giana A, Gibbons S, Maffei M, Gnavi G, Grassi G, Sterner O (2008) A polar cannabinoid from Cannabis sativa var. Carma. Nat Prod Commun 12:1977Google Scholar
  64. 64.
    Pollastro F, Taglialatela-Scafati O, Allarà M, Munoz E, Di Mazo V, De Petrocellis L, Appendino G (2011) Bioactive prenylogous cannabinoid from fiber hemp (Cannabis sativa). J Nat Prod 74:2019CrossRefGoogle Scholar
  65. 65.
    Gaoni Y, Mechoulam R (1966) Cannabichromene, a new active principle in hashish. Chem Commun 1:20Google Scholar
  66. 66.
    Claussen U, Von Spulak F, Korte F (1966) The chemical classification of plants—XXXI, hashish—10. Cannabichromene, a new hashish component. Tetrahedron 22:1477CrossRefGoogle Scholar
  67. 67.
    Adams R, Hunt M, Clark JH (1940) Structure of cannabidiol, a product isolated from the marihuana extract of Minnesota wild hemp. I. J Am Chem Soc 62:196CrossRefGoogle Scholar
  68. 68.
    Petrzilka T, Haefliger W, Sikemeier C (1969) Synthesis of hashish components. IV. Helv Chim Acta 52:1102CrossRefGoogle Scholar
  69. 69.
    Shani A, Mechoulam R (1974) Cannabielsoic acids. Isolation and synthesis by a novel oxidative cyclization. Tetrahedron 30:2437CrossRefGoogle Scholar
  70. 70.
    Yamamoto I, Gohda H, Narimatsu S, Watanabe K, Yoshimura H (1991) Cannabielsoin as a new metabolite of cannabidiol in mammals. Pharmacol Biochem Behav 40:541CrossRefGoogle Scholar
  71. 71.
    Korte F, Sieper H (1964) Chemical classification of plants. XXIV. Hashish constituents by thin-layer chromatography. J Chromatogr 13:90CrossRefGoogle Scholar
  72. 72.
    Mechoulam R, Gaoni Y (1967) Recent advances in the chemistry of hashish. Fortschr Chem Org Naturst 25:175Google Scholar
  73. 73.
    Claussen U, Von Spulak F, Korte F (1968) Hashish. XIV. Components of hashish. Tetrahedron 24:1021CrossRefGoogle Scholar
  74. 74.
    Shoyama Y, Oku R, Yamauchi T, Nishioka I (1972) Cannabis. VI. Cannabicyclolic acid. Chem Pharm Bull 20:1927CrossRefGoogle Scholar
  75. 75.
    Shoyama Y, Morimoto S, Nishioka I (1981) Cannabis. XIV. Two new propyl cannabinoids, cannabicyclovarin and Δ7-cis-iso-tetrahydrocannabivarin, from Thai cannabis. Chem Pharm Bull 29:3720CrossRefGoogle Scholar
  76. 76.
    Novak J, Salemink CA (1983) Cannabis. XXVII: Synthesis of 8-, 10-, and 11-oxygenated cannabinols. J Chem Soc Perkin Trans 1:2867CrossRefGoogle Scholar
  77. 77.
    Obata Y, Ishikawa Y (1966) Constituents of hemp plant (Cannabis sativa). III. Isolation of a Gibbs-positive compound from Japanese hemp. Agric Biol Chem 30:619Google Scholar
  78. 78.
    Chan WR, Magnus KE, Watson HA (1976) The structure of cannabitriol. Experientia 32:283CrossRefGoogle Scholar
  79. 79.
    McPhail AT, ElSohly HN, Turner CE, ElSohly MA (1984) Stereochemical assignments for the two enantiomeric pairs of 9,10-dihydroxy-Δ6a(10a)-tetrahydrocannabinols. X-ray crystal structure analysis of (±)-trans-cannabitriol. J Nat Prod 47:138CrossRefGoogle Scholar
  80. 80.
    ElSohly MA, Boeren EG, Turner CE (1978) (±)-9,10-Dihydroxy-Δ6a(10a)-tetrahydrocannabinol and (±)-8,9-dihydroxy-Δ6a(10a)-tetrahydrocannabinol: 2 new cannabinoids from Cannabis sativa L. Experientia 34:1127Google Scholar
  81. 81.
    Harvey DJ (1985) Examination of a 140 year old ethanolic extract of Cannabis: identification of new cannabitriol homologues and the ethyl homologue of cannabinol. In: Harvey DJ, Paton W, Hahas GG (eds) Marihuana 84: proceedings of the Oxford Symposium on Cannabis 9th International Congress of Pharmacology, 3rd Satellite Symposium on Cannabis. IRL Press, Oxford, p 23Google Scholar
  82. 82.
    Appendino G, Chianese G, Taglialatela-Scafati O (2011) Cannabinoids: occurrence and medicinal chemistry. Curr Med Chem 18:1085CrossRefGoogle Scholar
  83. 83.
    Ahmed SA, Ross SA, Slade D, Radwan MM, Khan IA, ElSohly MA (2008) Structure determination and absolute configuration of cannabichromanone derivatives from high potency Cannabis sativa. Tetrahedron Lett 49:6050CrossRefGoogle Scholar
  84. 84.
    Radwan MM, ElSohly MA, Slade D, Ahmed SA, Wilson L, El-Alfy A, Khan IA, ElSohly MA (2008) Non-cannabinoid constituents from a high potency Cannabis sativa variety. Phytochemistry 69:2627CrossRefGoogle Scholar
  85. 85.
    Taglialatela-Scafati O, Pagani A, Scala F, De Petrocellis L, Di Marzo V, Grassi G, Giovanni G, Appendino G (2010) Cannabimovone, a cannabinoid with a rearranged terpenoid skeleton from hemp. Eur J Org Chem 11:2067CrossRefGoogle Scholar
  86. 86.
    Pagani A, Scala F, Chianese G, Grassi G, Appendino G, Taglialatela-Scafati O (2011) Cannabioxepane, a novel tetracyclic cannabinoid from hemp, Cannabis sativa L. Tetrahedron 67:3369CrossRefGoogle Scholar
  87. 87.
    Cheng L, Kong D, Hu G, Li H (2010) A new 9,10-dihydrophenanthrenedione from Cannabis sativa. Chem Nat Compd 46:710CrossRefGoogle Scholar
  88. 88.
    Cheng L, Kong D, Hu G (2008) Study on hemp I. Chemical constituents from petroleum ether and n-butanol portions of the methanol extract. Chin J Pharm 39:18Google Scholar
  89. 89.
    Qian S, Cai G-M, He G-X, Du F-L (2009) Study of the chemical constituents of the fruits of C. sativa L. Nat Prod Res Develop 21:784Google Scholar
  90. 90.
    Yan X, Tang J, dos Santos PC, Nurisso A, Simões-Pires CA, Ji M, Lou H, Fan P (2015) Characterization of lignanamides from hemp (Cannabis sativa L.) seed and their antioxidant and acetylcholinesterase inhibitory activities. J Agric Food Chem 63:10611CrossRefGoogle Scholar
  91. 91.
    ElSohly MA, Gul W, Salem M (2008) Handbook of analytical separations, vol 6. Elsevier, New York, p 235Google Scholar
  92. 92.
    Hewavitharana AK, Golding G, Tempany G, King G, Holling N (2005) Quantitative GC-MS analysis of Δ(9)-tetrahydrocannabinol in fiber hemp varieties. J Anal Toxicol 29:258CrossRefGoogle Scholar
  93. 93.
    Stambouli H, Elbouri A, Bellimam MA, Bouayoun T, El Karni N (2005) Cultivation of Cannabis sativa L. in northern Morocco. Bull Narc 57:79Google Scholar
  94. 94.
    Raharjo TJ, Verpoorte R (2004) Methods for the analysis of cannabinoids in biological materials: a review. Phytochem Anal 15:79CrossRefGoogle Scholar
  95. 95.
    Hazekamp A (2007) Cannabis: extracting the medicine. PhD Thesis, Universiteit Leiden, The NetherlandsGoogle Scholar
  96. 96.
    Hazekamp A, Peltenburg A, Verpoorte R (2005) Chromatographic and spectroscopic data of cannabinoids from Cannabis sativa. J Liq Chromatogr Relat Technol 28:2361CrossRefGoogle Scholar
  97. 97.
    Gambargo V, Fare DF, Froldi R, Saligari E, Tassoni G (2002) Determination of primary active constituents in Cannabis preparations by high-resolution gas chromatography. Anal Chim Acta 468:245CrossRefGoogle Scholar
  98. 98.
    Morita M, Ando H (1984) Analysis of hashish oil by gas chromatography/mass spectrometry. Kagaku Keisatsu Kenkyujo Hokoku Hokagaku-Hen 37:137Google Scholar
  99. 99.
    Brenneisen R, Egli A, ElSohly MA, Henn V, Spiess Y (1996) The effect of orally and rectally administered Δ9-tetrahydrocannabinol on spasticity. A pilot study with two patients. Int J Clin Pharmacol Ther 34:446Google Scholar
  100. 100.
    Hida M, Mitsi T, Minami Y, Fujimura Y (1995) Classification of hashish by pyrolysis-gas chromatography. J Anal Appl Pyro1 32:197Google Scholar
  101. 101.
    Ross SA, Parker M, Arafat R, Lovett K, ElSohly MA (1996) The analysis of confiscated marijuana samples for different cannabinoids using GC/FID. Am Lab 16:16Google Scholar
  102. 102.
    Veress T, Szántó J, Leisztner L (1988) HPLC analysis of cannabinoids using amino bonded stationary phase column. In: Kalász H, Ettre L (eds) Chromatog 87. Akadémia Kiadó, Budapest, p 481Google Scholar
  103. 103.
    Bosy TZ, Cole KA (2000) Consumption and quantitation of Δ9-tetrahydrocannabinol in commercially available hemp. J Anal Toxicol 24:562CrossRefGoogle Scholar
  104. 104.
    UNODC (2009) Recommended methods for the identification and analysis of cannabis and cannabis products. United Nations Office on Drugs and Crime, ViennaGoogle Scholar
  105. 105.
    Zoller O, Rhyn P, Zimmerli B (2000) High-performance liquid chromatographic determination of delta-9-tetrahydrocannabinol and the corresponding acid in hemp containing foods with special regard to the fluorescence properties of delta-9-tetrahydrocannabinol. J Chromatogr A 872:101CrossRefGoogle Scholar
  106. 106.
    Ross SA, Mehmedic Z, Murphy TP, ElSohly MA (2000) GC/MS analysis of the total Δ9-THC content of both drug and fiber type Cannabis seeds. J Anal Toxicol 24:715CrossRefGoogle Scholar
  107. 107.
    Pellegriini M, Marchei E, Pacifici R, Pichini S (2005) A rapid and simple procedure for the determination of cannabinoids in hemp food products by gas chromatography-mass spectrography. J Pharm Biomed Anal 36:939CrossRefGoogle Scholar
  108. 108.
    Kovar KA, Linder H (1991) Investigation of hashish: content uniformity of different samples by coupled HPLC/PC-analysis. Arch Pharm (Weinheim) 324:329CrossRefGoogle Scholar
  109. 109.
    Hazekamp A, Choi YH, Verpoorte R (2004) Quantitative analysis of cannabinoids from Cannabis sativa. Chem Pharm Bull 52:718CrossRefGoogle Scholar
  110. 110.
    Elias L, Lawrence AH (1991) The analysis of drugs of abuse. Wiley, New YorkGoogle Scholar
  111. 111.
    Xia L, Guo Y, Deng S (2011) Simultaneous determination of 3 cannabinoids in C sativa by silica gel chromatography-RP-HPLC. Zhongguo Yaofang 22:2557Google Scholar
  112. 112.
    Wang C, Yang H, Li Q, Chen X, Zhang T, Bi K (2010) RP-HPLC simultaneous determination of three cannabinoids in hemp seed oil. Yaowu Fenxi Zazhi 30:1742Google Scholar
  113. 113.
    Fischedick JT, Glas R, Hazekamp A, Verpoorte R (2009) A qualitative and quantitative HPTLC densitometry method for the analysis of cannabinoids in Cannabis sativa L. Phytochem Anal 20:421CrossRefGoogle Scholar
  114. 114.
    Holland BJ, Francis PS, Tsuzuki T, Adcock JL, Barnett NW, Conlan XL (2012) Chemiluminescence detection of cannabinoids and related compounds with acidic potassium permanganate. Drug Test Anal 4:675CrossRefGoogle Scholar
  115. 115.
    Gul W, Shahbaz W, Radwan MM, Wanas AS, Mehmedic Z, Khan IA, Sharaf MHM, ElSohly MA (2015) Determination of 11 cannabinoids in biomass and extracts of different varieties of Cannabis using high-performance liquid chromatography. J AOAC Int 98:1523CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of PharmacyThe University of MississippiUniversityUSA
  2. 2.ElSohly Laboratories, Inc.OxfordUSA

Personalised recommendations