Advertisement

An Efficient Construction of a Compression Function for Cryptographic Hash

  • Rashed MazumderEmail author
  • Atsuko Miyaji
  • Chunhua Su
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9817)

Abstract

A cryptographic hash \(\left( \text {CH}\right) \) is an algorithm that invokes an arbitrary domain of the message and returns fixed size of an output. The numbers of application of cryptographic hash are enormous such as message integrity, password verification, and pseudorandom generation. Furthermore, the \(\mathrm {CH}\) is an efficient primitive of security solution for IoT-end devices, constrained devices, and RfID. The construction of the \(\mathrm {CH}\) depends on a compression function, where the compression function is constructed through a scratch or blockcipher. Generally, the blockcipher based cryptographic hash is more applicable than the scratch based hash because of direct implementation of blockcipher rather than encryption function. Though there are many \(\left( n, 2n\right) \) blockcipher based compression functions, but most of the prominent schemes such as MR, Weimar, Hirose, Tandem, Abreast, Nandi, and ISA09 are focused for rigorous security bound rather than efficiency. Therefore, a more efficient construction of blockcipher based compression function is proposed, where it provides higher efficiency-rate including a satisfactory collision security bound. The efficiency-rate \(\left( r\right) \) of the proposed scheme is \(r \approx 1\). Furthermore, the collision security is bounded by \(q=2^{125.84}\) \(\left( q=\text {numer of query}\right) \). Moreover, the proposed construction requires two calls of blockcipher under single iteration of encryption. Additionally, it has double key scheduling and it’s operational mode is parallel.

Keywords

Cryptographic hash Collision resistance Constrained device 

References

  1. 1.
    Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash functions and RFID tags: mind the gap. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography, 5th edn. CRC Press, Boca Raton (2001)zbMATHGoogle Scholar
  3. 3.
    Kaps, J.-P., Sunar, B.: Energy comparison of AES and SHA-1 for ubiquitous computing. In: Zhou, X., Sokolsky, O., Yan, L., Jung, E.-S., Shao, Z., Mu, Y., Lee, D.C., Kim, D.Y., Jeong, Y.-S., Xu, C.-Z. (eds.) EUC Workshops 2006. LNCS, vol. 4097, pp. 372–381. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 1–18. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Fleischmann, E., Forler, C., Lucks, S., Wenzel, J.: Weimar-DM: a highly secure double-length compression function. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 152–165. Springer, Heidelberg (2012)Google Scholar
  7. 7.
    Lee, J., Kapitanova, K., Son, S.H.: The price of security in wireless sensor networks. Comput. Netw. 54(17), 2967–2978 (2010). ElsevierCrossRefGoogle Scholar
  8. 8.
    Özen, O., Stam, M.: Another glance at double-length hashing. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 176–201. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Lee, J., Stam, M.: MJH: a faster alternative to MDC-2. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 213–236. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Lai, X., Massey, J.L.: Hash functions based on block ciphers. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  11. 11.
    Lee, J., Kwon, D.: The security of abreast-DM in the ideal cipher model. IEICE Trans. 94–A(1), 104–109 (2011)CrossRefGoogle Scholar
  12. 12.
    Lee, J., Stam, M., Steinberger, J.: The collision security of Tandem-DM in the ideal cipher model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 561–577. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Hirose, S.: Some plausible constructions of double-block-length hash functions. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Armknecht, F., Fleischmann, E., Krause, M., Lee, J., Stam, M., Steinberger, J.: The preimage security of double-block-length compression functions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 233–251. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Mennink, B.: Optimal collision security in double block length hashing with single length key. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 526–543. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Black, J.A., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Black, J., Rogaway, P., Shrimpton, T., Stam, M.: An analysis of the blockcipher-based hash functions from PGV. J. Cryptol. 23, 519–545 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hirose, S., Kuwakado, H.: Collision resistance of hash functions in a weak ideal cipher model. IEICE Trans. 95A(1), 251–255 (2012)Google Scholar
  19. 19.
    Liskov, M.: Constructing an ideal hash function from weak ideal compression functions. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 358–375. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Nandi, M., Lee, W.I., Sakurai, K., Lee, S.-J.: Security analysis of a 2/3-Rate double length compression function in the black-box model. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 243–254. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Lee, J., Hong, S., Sung, J., Park, H.: A new double-block-length hash function using feistel structure. In: Park, J.H., Chen, H.-H., Atiquzzaman, M., Lee, C., Kim, T., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 11–20. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 128(4), 656–715 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Miyaji, A., Mazumder, R.: A new (n, 2n) double block length hash function based on single key scheduling. In: IEEE Explore, AINA, pp. 564–570 (2015)Google Scholar
  24. 24.
    Abed, F., Forler, C., List, E., Lucks, S., Wenzel, J.: Counter-bDM: a provably secure family of multi-block-length compression functions. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT. LNCS, vol. 8469, pp. 440–458. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  25. 25.
    Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revisited: how to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Dodis, Y., Puniya, P.: On the relation between the ideal cipher and the random oracle models. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 184–206. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Joan, D., Vincent, R.: The Design of Rijndael, AES-The Advanced Encryption Standard. Springer, Heidelberg (2002). ISBN: 978-3-662-04722-4zbMATHGoogle Scholar
  28. 28.
    Kuwakado, H., Hirose, S.: Hashing mode using a lightweight blockcipher. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 213–231. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  29. 29.
    Burak, D.: Parallelization of a block cipher based on chaotic neural networks. In: Rutkowski, L., et al. (eds.) ICAISC 2015, Part II. LNCS(LNAI), vol. 9120, pp. 191–201. Springer, Switzerland (2015)CrossRefGoogle Scholar
  30. 30.
    Bos, J.W., Özen, O., Stam, M.: Efficient hashing using the AES instruction set. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 507–522. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Mazumder, R., Miyaji, A.: A new scheme of blockcipher hash. IEICE Trans. 99–D(4), 796–804 (2016)CrossRefGoogle Scholar
  32. 32.
    Knudsen, L.R., Mendel, F., Rechberger, C., Thomsen, S.S.: Cryptanalysis of MDC-2. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 106–120. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  33. 33.
    Miyaji, A., Mazumder, R., Sawada, T.: A new (n, n) blockcipher hash function: apposite for short messages. In: IEEE Explore, Asia JCIS, pp. 56–63 (2014)Google Scholar
  34. 34.
    Mazumder, R., Miyaji, A.: A single key scheduling based compression function. In: Lambrinoudakis, C., Gabillon, A. (eds.) CRiSIS 2015. LNCS, vol. 9572, pp. 207–222. Springer, Switzerland (2015)Google Scholar
  35. 35.
    Barreto, L., Celesti, A., Villari, M., Fazio, M., Puliafito, A.: An authentication model for IoT clouds. In: IEEE Explore, ASONAM, pp. 1032–1035 (2015)Google Scholar
  36. 36.
    Riahi, A., Natalizio, E., Challal, Y., Mitton, N., Iera, A.: A systemic and cognitive approach for IoT security. In: IEEE Explore, ICNC, pp. 183–188 (2014)Google Scholar
  37. 37.
    Lee, J.Y., Huang, Y.H.: A lightweight authentication protocol for internet of things. In: IEEE Explore, ISNE, pp. 1–2 (2014)Google Scholar
  38. 38.
    Jing, Q., Vasilakos, A.V., Wan, J.: Security of the internet of things: perspectives and challenges. Wirel. Netw. 20(8), 2481–2501 (2014). SpringerCrossRefGoogle Scholar
  39. 39.
    Abomhara, M., Kien, G.M.: Security and privacy in the internet of things: current status and open issues. In: IEEE Explore, PRIMS, pp. 1–8 (2014)Google Scholar
  40. 40.
    Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)CrossRefGoogle Scholar
  41. 41.
    Xu, L.D., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans. Ind. Inf. 10(4), 2233–2243 (2014)CrossRefGoogle Scholar
  42. 42.
    Hirose, S., Ideguchi, K., Kuwakado, H., Owada, T., Preneel, B., Yoshida, H.: A lightweight 256-Bit hash function for hardware and low-end devices: Lesamnta-LW. In: Rhee, K.-H., Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 151–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  43. 43.
    Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit Blockcipher CLEFIA, IACR archive, Extended Abstract. https://www.iacr.org/archive/fse2007/45930182/45930182.pdf
  44. 44.
    Yoshida, H.: On the standardization of cryptographic application techniques for IoT devices in ITU techniques for IoT devices in ITU-T and ISO/IEC JTC 1 T and ISO/IEC JTC1 (2015). https://www.ietf.org/proceedings/94/slides/slides-94-saag-2.pdf
  45. 45.
    Fleischmann, E., Forler, C., Lucks, S.: The collision security of MDC-4. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 252–269. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  1. 1.Graduate School of EngineeringOsaka UniversityOsakaJapan
  2. 2.Japan Advanced Institute of Science and TechnologyNomiJapan
  3. 3.Japan Science and Technology Agency (JST) CRESTTokyoJapan

Personalised recommendations