Visualization Model for Monitoring of Computer Networks Security Based on the Analogue of Voronoi Diagrams

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9817)

Abstract

In this paper we propose an approach to the development of the computer network visualization system for security monitoring, which uses a conceptually new model of graphic visualization that is similar to the Voronoi diagrams. The proposed graphical model uses the size, color and opacity of the cell to display host parameters. The paper describes a technique for new graphical model construction and gives examples of its application along with traditional graph based and other models.

Keywords

Visual analytics Visualization of security data Graphical models Computer networks Voronoi diagrams 

References

  1. 1.
    Wang, M., Woodruff, A., Kuchinsky, A.: Guidelines for using multiple views in information visualization. J. Adv. Vis. Interfaces, 110–119 (2000)Google Scholar
  2. 2.
    Shi, L., Liao, Q., Sun, X., Chen, Y., Lin, C.: Scalable network traffic visualization using compressed graphs. In: Proceedings of the IEEE International Conference on Big Data (BigData 2013), Santa Clara, CA (2013)Google Scholar
  3. 3.
    Tufte, E.: Visual Explanations. Graphics Press, Cheshire (1997)MATHGoogle Scholar
  4. 4.
    Klyshinskij, J., Rysakov, S., Shihov, A.: Review of the methods of multidimensional data visualization. J. New Inf. Technol. Autom. Syst., 519–530 (2014)Google Scholar
  5. 5.
    Marty, R.: Applied Security Visualization. Addison Wesley Professional, Reading (2009)Google Scholar
  6. 6.
    Kwan-Liu, M.: Cyber security through visualization. In: Asia Pacific Symposium on Information Visualisation, Tokyo, Japan (2006)Google Scholar
  7. 7.
    Noel, S., Jajodia, S.: Understanding complex network attack graphs through clustered adjacency matrices. In: 21st Annual Computer Security Applications Conference (ACSAC 2005). IEEE Computer Society (2005)Google Scholar
  8. 8.
    Lau, S.: The spinning cube of potential doom. Commun. ACM 47(6), 24–26 (2004)CrossRefGoogle Scholar
  9. 9.
    Harrison, L., Spahn, R., Iannacone, M., Downing, E., Goodall, J.: Nessus vulnerability visualization for the web. In: VizSec 2012, Seattle, WA, USA (2012)Google Scholar
  10. 10.
    Williams, L., Lippmann, R., Ingols, K.: GARNET: a graphical attack graph and reachability network evaluation tool. In: Goodall, J.R., Conti, G., Ma, K.-L. (eds.) VizSec 2008. LNCS, vol. 5210, pp. 44–59. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    McGuffin, M.: Simple algorithms for network visualization: a tutorial. J. Tsinghua Sci. Technol. 17(4), 383–398 (2012)CrossRefGoogle Scholar
  12. 12.
    Novikova, E., Kotenko, I.: Analytical visualization techniques for security information and event management. In: 21st Euromicro International Conference on Parallel, Distributed and network-based Processing (PDP 2013), Belfast (2013)Google Scholar
  13. 13.
    Montemayor, J., Freeman, A., Gersh, J., Llanso, T., Patrone, D.: Information visualisation for rule-based resource access control. In: International Symposium on Usable Privacy and Security (SOUPS) (2006)Google Scholar
  14. 14.
    Glatz, E., Mavromatidis, S., Ager, B., Dimitropoulos, X.: Visualizing big network traffic data using frequent pattern mining and hypergraphs. In: Proceedings of the First IMC Workshop on Internet Visualization (WIV 2012), Boston, MA, USA (2012)Google Scholar
  15. 15.
    Mansmann, F., Fischer, F., Keim, D.A., North, S.C.: Visual support for analyzing network traffic and intrusion detection events using treemap and graph representations. In: Proceedings of the Symposium on Computer Human Interaction for the Management of Information Technology (CHiMiT 2009), vol. 3, pp. 19–28 (2009)Google Scholar
  16. 16.
    Kotenko, I., Chechulin, A.: Common framework for attack modeling and security evaluation in SIEM systems. In: 2012 IEEE International Conference on Green Computing and Communications, Conference on Internet of Things, and Conference on Cyber, Physical and Social Computing, Besançon, France (2012)Google Scholar
  17. 17.
    Kolomeec, M., Chechulin, A., Kotenko, I.: Methodological primitives for phased construction of data visualization models. J. Internet Serv. Inf. Secur. (JISIS) 5(4), 60–84 (2015)Google Scholar
  18. 18.
    Aurenhammer, F., Klein, R., Lee, D.: Voronoi Diagrams and Delaunay Triangulations. World Scientific Publishing Co., Singapore (2013)CrossRefMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Maxim Kolomeets
    • 1
  • Andrey Chechulin
    • 1
  • Igor Kotenko
    • 1
  1. 1.Laboratory of Computer Security ProblemsSt. Petersburg Institute for Informatics and Automation (SPIIRAS)St. PetersburgRussia

Personalised recommendations