Quantitative Reliability Assessment for Mobile Cooperative Systems

  • Francesca Saglietti
  • Ralf Spengler
  • Matthias Meitner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9923)

Abstract

This article proposes a systematic approach to statistical testing for cooperative systems consisting of autonomous mobile agents. Based on Coloured Petri Net models of cooperative behaviour, it analyses different sources of randomness and defines an automatic test case generation procedure to derive cooperative scenarios according to a given operational profile. As an example, the approach is applied to a model of trolleys moving within a common environment. The results allow for quantitative reliability estimations of cooperative behaviour on the basis of statistical sampling theory.

Keywords

Reliability Robots Autonomous agents Cooperation CPN modelling Statistical testing Operational profile 

References

  1. 1.
    Jensen, K., Kristensen, L.M.: Coloured Petri Nets. Springer, Heidelberg (2009)MATHCrossRefGoogle Scholar
  2. 2.
    Bergenhem, C., Shladover, S., Coelingh, E.: Overview of Platooning Systems. In: Proceedings of the 19th World Congress on Intelligent Transportation Systems (ITS) (2012)Google Scholar
  3. 3.
    Saglietti, F., Föhrweiser, D., Winzinger, S., Lill, R.: Model-based design and testing of decisional autonomy and cooperation in cyber-physical systems. In: Proceedings of the International Conference on Software Engineering and Advanced Applications. IEEE Xplore Digital Library (2015)Google Scholar
  4. 4.
    Cai, Z., Zhang, J., Liu, Z.: Generating test cases using colored petri net. In: Proceedings of the 2nd International Symposium on Information Engineering and Electronic Commerce. IEEE Xplore Digital Library (2010)Google Scholar
  5. 5.
    Söhnlein, S., Saglietti, F., Bitzer, F., Meitner, M., Baryschew, S.: Software reliability assessment based on the evaluation of operational experience. In: Müller-Clostermann, B., Echtle, K., Rathgeb, E.P. (eds.) MMB & DFT 2010. LNCS, vol. 5987, pp. 24–38. Springer, Heidelberg (2010)Google Scholar
  6. 6.
    Störmer, H.: Mathematische Theorie der Zuverlässigkeit. Oldenbourg, Munich (1983)MATHGoogle Scholar
  7. 7.
    Nehmzow, U.: Scientific Methods in Mobile Robotics. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    CPNTools and Access/CPN by AIS Group, Eindhoven University of Technology and CPN Group, Aarhus UniversityGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Francesca Saglietti
    • 1
  • Ralf Spengler
    • 1
  • Matthias Meitner
    • 1
  1. 1.Software Engineering (Informatik 11)University of Erlangen-NurembergErlangenGermany

Personalised recommendations