Effective Static and Dynamic Fault Tree Analysis

  • Ola Bäckström
  • Yuliya ButkovaEmail author
  • Holger Hermanns
  • Jan Krčál
  • Pavel KrčálEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9922)


Fault trees constitute one of the essential formalisms for static safety analysis of various industrial systems. Dynamic fault trees (DFT) enrich the formalism by support for time-dependent behaviour, e.g., repairs or dynamic dependencies. This enables more realistic and more precise modelling, and can thereby avoid overly pessimistic analysis results. But analysis of DFT is so far limited to substantially smaller models than those required for instance in the domain of nuclear power safety. This paper considers so called SD fault trees, where the user is free to express each equipment failure either statically, without modelling temporal information, or dynamically, allowing repairs and other timed interdependencies. We introduce an analysis algorithm for an important subclass of SD fault trees. The algorithm employs automatic abstraction techniques effectively, and thereby scales similarly to static analysis algorithms, albeit allowing for a more realistic modelling and analysis. We demonstrate the applicability of the method by an experimental evaluation on fault trees of nuclear power plants.


Diesel Engine Failure Probability Basic Event Fault Tree Mission Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is partly supported by the ERC Advanced Investigators Grant 695614 (POWVER), by the EU 7th Framework Programme under grant agreement no. 318490 (SENSATION) and 288175 (CERTAINTY), by the DFG Transregional Collaborative Research Centre SFB/TR 14 AVACS, by the CDZ project 1023 (CAP), and by the Czech Science Foundation, grant No. P202/12/G061.


  1. 1.
    Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Dugan, B.J., Bavuso, S.J., Boyd, M.: Dynamic fault-tree models for fault-tolerant computer systems. IEEE Trans. Reliab. 41(3), 363–377 (1992)CrossRefzbMATHGoogle Scholar
  3. 3.
    Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE Trans. Depandable Sec. Compt. 7(2), 128–143 (2010)CrossRefGoogle Scholar
  4. 4.
    Bouissou, M., Bon, J.L.: A new formalism that combines advantages of fault-trees and Markov models: Boolean logic driven Markov processes. Reliab. Eng. Syst. Saf. 82(2), 149–163 (2003)CrossRefGoogle Scholar
  5. 5.
    Brázdil, T., Hermanns, H., Krčál, J., Křetínský, J., Řehák, V.: Verification of open interactive Markov chains. In: FSTTCS. LIPIcs, vol. 18, pp. 474–485 (2012)Google Scholar
  6. 6.
    Butkova, Y., Hatefi, H., Hermanns, H., Krcál, J.: Optimal continuous time Markov decisions. In: Finkbeiner, B., et al. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 166–182. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24953-7_12 CrossRefGoogle Scholar
  7. 7.
    Center for Chemical Process Safety: Guidelines for Hazard Evaluation Procedures, 3rd edn. Wiley, Hoboken (2008)Google Scholar
  8. 8.
    Fussell, J.B., Vesely, W.E.: A new methodology for obtaining cut sets for fault trees. Trans. Am. Nucl. Soc. 15, 262–263 (1972)Google Scholar
  9. 9.
    IAEA: Development and Application of Level 1 Probabilistic Safety Assessment for Nuclear Power Plants, IAEA Safety Standards Series No. SSG-3 (2010)Google Scholar
  10. 10.
    IAEA: Development and Application of Level 2 Probabilistic Safety Assessment for Nuclear Power Plants, IAEA Safety Standards Series No. SSG-4 (2010)Google Scholar
  11. 11.
    Krčál, J., Krčál, P.: Scalable analysis of fault trees with dynamic features. In: DSN 2015, pp. 89–100 (2015)Google Scholar
  12. 12.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Lloyd’s Register Consulting: RiskSpectrum, Theory Manual (2013)Google Scholar
  14. 14.
    NASA: Fault Tree Handbook with Aerospace Applications (2002)Google Scholar
  15. 15.
    Ruijters, E.J.J., Stoelinga, M.I.A.: Fault tree analysis: a survey of the state of the art in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Vesely, W., Davis, T., Denning, R., Saltos, N.: Measures of risk importance and their application (NUREG/CR-3385). US Nuclear Regulatory Commission (1983)Google Scholar
  17. 17.
    Vesely, W., Goldberg, F., Roberts, N., Haasl, D.: Fault Tree Handbook(NUREG/CR-0492). US Nuclear Regulatory Commission (1981)Google Scholar
  18. 18.
    Wood, S., Smith, C.L., Kvarfordt, K.J., Beck, S.: Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE): Summary Manual (NUREG/CR-6952, vol. 1). US Nuclear Regulatory Commission (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Lloyd’s Register ConsultingStockholmSweden
  2. 2.Computer ScienceSaarland UniversitySaarbrückenGermany

Personalised recommendations