Advancing Dynamic Fault Tree Analysis - Get Succinct State Spaces Fast and Synthesise Failure Rates

  • Matthias Volk
  • Sebastian Junges
  • Joost-Pieter Katoen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9922)

Abstract

This paper presents a new state space generation approach for dynamic fault trees (DFTs) together with a technique to synthesise allowed failures rates in DFTs. Our state space generation technique aggressively exploits the DFT structure — detecting symmetries, spurious non-determinism, and don’t cares. Benchmarks show a gain of more than two orders of magnitude in terms of state space generation and analysis time. Our approach supports DFTs with symbolic failure rates and is complemented by parameter synthesis. This enables determining the maximal tolerable failure rate of a system component while ensuring that the mean time of failure stays below a threshold.

References

  1. 1.
    Dugan, J.B., Bavuso, S.J., Boyd, M.: Fault trees and sequence dependencies. In: Proceedings of RAMS, pp. 286–293 (1990)Google Scholar
  2. 2.
    Stamatelatos, M., Vesely, W., Dugan, J.B., Fragola, J., Minarick, J., Railsback, J.: Fault Tree Handbook with Aerospace Applications. NASA Headquarters, Washington, D.C. (2002)Google Scholar
  3. 3.
    Coppit, D., Sullivan, K.J., Dugan, J.B.: Formal semantics of models for computational engineering: a case study on dynamic fault trees. In: Proceedings of ISSRE, pp. 270–282 (2000)Google Scholar
  4. 4.
    Sullivan, K., Dugan, J.B., Coppit, D.: The Galileo fault tree analysis tool. In: Proceedings of FTCS, pp. 232–235 (1999)Google Scholar
  5. 5.
    Boudali, H., Crouzen, P., Stoelinga, M.I.A.: A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE Trans. Dependable Secure Comput. 7(2), 128–143 (2010)CrossRefGoogle Scholar
  6. 6.
    Junges, S., Guck, D., Katoen, J.P., Stoelinga, M.: Uncovering dynamic fault trees. In: Proceedings of DSN (2016, to appear)Google Scholar
  7. 7.
    Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 147–158. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)MATHGoogle Scholar
  9. 9.
    Ou, Y., Dugan, J.B.: Sensitivity analysis of modular dynamic fault trees. In: Proceedings of IPDS, pp. 35–43 (2000)Google Scholar
  10. 10.
    Montani, S., Portinale, L., Bobbio, A., Codetta-Raiteri, D.: Automatically translating dynamic fault trees into dynamic Bayesian networks by means of a software tool. In: Proceedings of ARES, pp. 804–809 (2006)Google Scholar
  11. 11.
    Walker, M., Papadopoulos, Y.: Qualitative temporal analysis: towards a full implementation of the Fault Tree Handbook. Control Eng. Pract. 17(10), 1115–1125 (2009)CrossRefGoogle Scholar
  12. 12.
    Junges, S., Guck, D., Katoen, J.P., Rensink, A., Stoelinga, M.: Fault trees on a diet - automated reduction by graph rewriting. In: Li, X., Liu, Z., Yi, W. (eds.) SETTA 2015. LNCS, vol. 9409, pp. 3–18. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  13. 13.
    Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc: a tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFECOMP. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: Proc. of LICS, pp. 342–351. IEEE Computer Society (2010)Google Scholar
  15. 15.
    Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Gulati, R., Dugan, J.B.: A modular approach for analyzing static and dynamic fault trees. In: Proceedings of RAMS, pp. 57–63 (1997)Google Scholar
  17. 17.
    Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)MATHCrossRefGoogle Scholar
  19. 19.
    Guck, D., Hatefi, H., Hermanns, H., Katoen, J.P., Timmer, M.: Analysis of timed and long-run objectives for Markov automata. LMCS 10(3), 17 (2014)MathSciNetMATHGoogle Scholar
  20. 20.
    Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen, J.-P., Ábrahám, E.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  21. 21.
    Guck, D., Katoen, J.P., Stoelinga, M., Luiten, T., Romijn, J.: Smart railroad maintenance engineering with stochastic model checking. In: Proceedings of RAILWAYS, Civil-Comp Proceedings, Civil-Comp Press, vol. 104, pp. 299–314 (2014)Google Scholar
  22. 22.
    Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety, dependability and performance analysis of extended AADL models. Comput. J. 54, 754–775 (2011)CrossRefGoogle Scholar
  23. 23.
    Češka, M., Dannenberg, F., Kwiatkowska, M., Paoletti, N.: Precise parameter synthesis for stochastic biochemical systems. In: Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 86–98. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Matthias Volk
    • 1
  • Sebastian Junges
    • 1
  • Joost-Pieter Katoen
    • 1
  1. 1.Software Modeling and VerificationRWTH Aachen UniversityAachenGermany

Personalised recommendations