Accuracy Analysis for Fractional Order Transfer Function Models with Delay

  • Krzysztof OprzędkiewiczEmail author
  • Wojciech Mitkowski
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 407)


In the paper a new accuracy estimation method for fractional order transfer functions with delay is presented. Oustaloup’s recursive approximation (ORA approximation) and Charef approximation allow us to describe fractional-order systems with the use of integer-order, proper transfer function, a delay is required to be modeled with the use of Pade approximant. Results are by simulations depicted.


Fractional order transfer function Oustaloup’s recursive approximation Approximation Charef approximation Time-delay systems 



This paper was supported by the AGH (Poland) – project no


  1. 1.
    Kaczorek, T.: Selected Problems in Fractional Systems Theory. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  2. 2.
    Mitkowski, W., Obrączka, A.: Simple identification of fractional differential equation. Solid State Phenom. 180, 331–338 (2012)CrossRefGoogle Scholar
  3. 3.
    Mitkowski, W., Skruch, P.: Fractional-order models of the supercapacitors in the form of RC ladder networks. Bull. Pol. Acad.: Tech. 61(3), 581–587 (2013)Google Scholar
  4. 4.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  5. 5.
    Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3), 231–248 (2000)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Oprzędkiewicz, K.: A Strejc model-based, semi-fractional (SSF) transfer function model. Automatyka/Automatics; AGH UST 16(2), 145–154 (2012)Google Scholar
  7. 7.
    Mitkowski, W.: Finite-dimensional approximations of distributed RC networks. Bull. Pol. Acad.: Tech. 62(2), 263–269 (2014)Google Scholar
  8. 8.
    Caponetto, R., Dongola, G., Fortuna, L., Petras, I.: Fractional Order Systems. Modeling and Control Applications. World Scientific Series on Nonlinear Science, Series A, vol. 72. World Scientific Publishing, Singapore (2010)Google Scholar
  9. 9.
    Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, B.: Fractal system as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Oprzędkiewicz, K.: Approximation method for a fractional order transfer function with zero and pole. Arch. Control Sci. 24(4), 409–425 (2014)MathSciNetGoogle Scholar
  11. 11.
    Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I. Fundam. Theory 47(1), 25–39 (2000)CrossRefGoogle Scholar
  12. 12.
    Mitkowski, W., Oprzędkiewicz, K.: An estimation of accuracy of Charef approximation. In: Domek, S., Dworak, P. (eds.) Theoretical Developments and Applications of Non-Integer Order Systems: 7th Conference on Non-Integer Order Calculus and Its Applications. Lecture Notes in Electrical Engineering, vol. 357, pp. 71–80. Springer, New York (2016)Google Scholar
  13. 13.
    Oprzędkiewicz, K., Mitkowski, W., Gawin, E.: An estimation of accuracy of Oustaloup approximation. In: Szewczyk, R., et al. (eds.) Challenges in Automation, Robotics and Measurement Techniques. Advances in Intelligent Systems and Computing, vol. 440, pp. 299–307. Springer, New York (2016)Google Scholar
  14. 14.
    Vajta, M.: Some remarks on Pade-approximations. In: Proceedings of the 3rd TEMPUS-INTCOM Symposium (2000)Google Scholar
  15. 15.
    Isermann, R., Muenchhof, M.: Identification of Dynamic Systems. An Introduction with Applications. Springer, New York (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Electrotechnics, Automatics, Informatics and Biomedical Engineering, Department of Automatics and Biomedical EngineeringAGH University of Science and TechnologyCracowPoland

Personalised recommendations