Estimating the Cost for Executing Business Processes in the Cloud

  • Vincenzo FermeEmail author
  • Ana Ivanchikj
  • Cesare Pautasso
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 260)


Managing and running business processes in the Cloud changes how Workflow Management Systems (WfMSs) are deployed. Consequently, when designing such WfMSs, there is a need of determining the sweet spot in the performance vs. resource consumption trade-off. While all Cloud providers agree on the pay-as-you-go resource consumption model, every provider uses a different cost model to gain a competitive edge. In this paper, we present a novel method for estimating the infrastructure costs of running business processes in the Cloud. The method is based on the precise measurement of the resources required to run a mix of business process in the Cloud, while accomplishing expected performance requirements. To showcase the method we use the BenchFlow framework to run experiments on a widely used open-source WfMS executing custom workload with a varying number of simulated users. The experiments are necessary to reliably measure WfMS’s performance and resource consumption, which is then used to estimate the infrastructure costs of executing such workload on four different Cloud providers.


Cloud resource cost Cloud BPM Business process execution Performance benchmarking Workflow management system 



This work is partially funded by the Swiss National Science Foundation with the BenchFlow - A Benchmark for Workflow Management Systems (Grant Nr. 145062).


  1. 1.
    Alkhanak, E.N., Lee, S.P., Khan, S.U.R.: Cost-aware challenges for workflow scheduling approaches in Cloud computing environments: Taxonomy and opportunities. Future Gener. Comput. Syst. 50, 3–21 (2015)CrossRefGoogle Scholar
  2. 2.
    Baeyens, T.: BPM in the cloud. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 10–16. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Brebner, P., Liu, A.: Modeling cloud cost and performance. In: Proceedings of Cloud Computing and Virtualization Conference (CCV 2010), Singapore (2010)Google Scholar
  4. 4.
    Cantara, M.: The state of the bpm platform cloud market (id: G00209943) (2011).
  5. 5.
    Chinosi, M., Trombetta, A.: Bpmn: An introduction to the standard. Comput. Stan. Interfaces 34(1), 124–134 (2012)CrossRefGoogle Scholar
  6. 6.
    Euting, S., et al.: Scalable business process execution in the Cloud. In: Proceedings of IC2E 2014, pp. 175–184, March 2014Google Scholar
  7. 7.
    Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance comparison of virtual machines and linux containers. Technical report, IBM, July 2014Google Scholar
  8. 8.
    Ferme, V., et al.: A framework for benchmarking BPMN 2.0 workflow management systems. In: Proceedings of BPM 2015, pp. 251–259. Springer (2015)Google Scholar
  9. 9.
    Ferme, V., et al.: A container-centric methodology for benchmarking workflow management systems. In: Proceedings of CLOSER 2016. Springer (2016)Google Scholar
  10. 10.
    Gillmann, M., Mindermann, R., Weikum, G.: Benchmarking and configuration of workflow management systems. In: Scheuermann, P., Etzion, O. (eds.) Cooperative Information Systems. LNCS, vol. 1901, pp. 186–197. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Gómez Sáez, S., et al.: Performance and cost evaluation for the migration of a scientific workflow infrastructure to the cloud. In: Proceedings of CLOSER 2015, pp. 1–10. SciTePress, May 2015Google Scholar
  12. 12.
    Han, Y.B., Sun, J.Y., Wang, G.L., Li, H.F.: A cloud-based BPM architecture with user-end distribution of non-compute-intensive activities and sensitive data. J. Comput. Sci. Technol. 25(6), 1157–1167 (2010)CrossRefGoogle Scholar
  13. 13.
    Höfer, C., Karagiannis, G.: Cloud computing services: taxonomy and comparison. J. Int. Serv. Appl. 2(2), 81–94 (2011)CrossRefGoogle Scholar
  14. 14.
    Janiesch, C., et al.: Optimizing the performance of automated business processes executed on virtualized infrastructure. In: Proceedings of HICSS, pp. 3818–3826 (2014)Google Scholar
  15. 15.
    Lenk, A., et al.: What are you paying for? performance benchmarking for infrastructure-as-a-service offerings. In: Proceedings of CLOUD 2011, pp. 484–491 (2011)Google Scholar
  16. 16.
    Liu, X., Yuan, D., Zhang, G., Li, W., Cao, D., He, Q., Chen, J., Yang, Y.: The design of Cloud workflow systems. Springer, Heidelberg (2011)Google Scholar
  17. 17.
    Merkel, D.: Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014(239), 2 (2014)Google Scholar
  18. 18.
    Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers. Wiley, New York (2003)zbMATHGoogle Scholar
  19. 19.
    zur Muehlen, M., Shapiro, R.: Business process analytics. In: Handbook on Business Process Management 2, pp. 137–157. Springer (2010)Google Scholar
  20. 20.
    Muehlen, M., Recker, J.: How much language is enough? theoretical and practical use of the business process modeling notation. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 465–479. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Röck, C., et al.: Performance benchmarking of BPEL engines: A comparison framework, status quo evaluation and challenges. In: Proceedings of SEKE, pp. 31–34 (2014)Google Scholar
  22. 22.
    Roller, D.H.: Throughput Improvements for BPEL Engines: Implementation Techniques and Measurements applied in SWoM. Ph.D. thesis, USTUTT (2013)Google Scholar
  23. 23.
    Schad, J., et al.: Runtime measurements in the cloud: observing, analyzing, and reducing variance. Proc. VLDB Endowment 3(1–2), 460–471 (2010)CrossRefGoogle Scholar
  24. 24.
    Baeyens, T.: BPM in the cloud. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 10–16. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Skouradaki, M., Ferme, V., Pautasso, C., Leymann, F., van Hoorn, A.: Micro-benchmarking BPMN 2.0 workflow management systems with workflow patterns. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 67–82. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-39696-5_5 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vincenzo Ferme
    • 1
    Email author
  • Ana Ivanchikj
    • 1
  • Cesare Pautasso
    • 1
  1. 1.Faculty of InformaticsUSI LuganoLuganoSwitzerland

Personalised recommendations