Actuator Design for Stabilizing Single Tendon Platforms

  • D. Haarhoff
  • M. Kolditz
  • D. Abel
  • S. Brell-Cokcan
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 46)


In this paper we illustrate the feasibility of using control moment gyroscopes (CMGs) for the stabilization of free swinging robots hanging from single tendons. Such systems may provide robotic workspaces of unprecedented size, especially in the vertical. Taking typical base reaction forces of industrial robots we show that control moment gyroscopes may provide means for compensation. From the basic principles of CMGs we derive design criteria for a free swinging robot platform. These criteria are illustrated in the design of a scissored pair CMG for a single DoF demonstrator.


Platform stabilization Tendon robotics Control moment gyroscopes 


  1. 1.
    Bruckmann, T.: Auslegung und Betrieb redundanter paralleler Seilroboter. Ph.D. thesis, Universität Duisburg-Essen, Fakultät für Ingenieurwissenschaften Maschinenbau und Verfahrenstechnik Institut für Mechatronik und Systemdynamik (2010)Google Scholar
  2. 2.
    Carpenter, M.D., Peck, M.: Others: reducing base reactions with gyroscopic actuation of space-robotic systems. IEEE Trans. Rob. 25(6), 1262–1270 (2009)CrossRefGoogle Scholar
  3. 3.
    Chiu, J., Goswami, A.: Design of a wearable scissored-pair control moment gyroscope (SP-CMG) for human balance assist. In: 38th Mechanisms and Robotics Conference, vol. 5A, p. V05AT08A023. ASME (2014). doi: 10.1115/DETC2014-35539
  4. 4.
    Gagne, J., Laroche, E., Piccin, O., Gangloff, J.: Active heart stabilization using adaptive noise cancelling techniques with gyroscopic actuation. In: 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 802–807. IEEE (2010)Google Scholar
  5. 5.
    Grossman, L.: 7 Questions with Randall Munroe (2015).
  6. 6.
    Kim, D.K.Y., Bretney, K., Shao, A., Tsang, A.L.: Electronic control system for gyroscopic stabilized vehicle (2013). U.S. Classification 701/124, 446/468, 446/440, 180/252; International Classification G06F17/10, A63H17/36, B60K17/30, G06G7/48, A63H17/00; Cooperative Classification B62K11/00, B62D37/06, B62D61/02, B62K2204/00, B62J17/08, B62J27/00, B62M7/12, B62K3/007Google Scholar
  7. 7.
    Leve, F.A., Hamilton, B.J., Peck, M.A.: Spacecraft Momentum Control Systems, vol. 1010. Springer (2015)Google Scholar
  8. 8.
    Li, Z., Liu, H., Wang, B.: Motion planning and coordination control of space robot using methods of calculated momentum. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1151–1156. IEEE (2013)Google Scholar
  9. 9.
    Mitsushige, O.: Motion control of the satellite mounted robot arm which assures satellite attitude stability. Acta Astronaut. 41(11), 739–750 (1997)CrossRefGoogle Scholar
  10. 10.
    Quinn, R.D., Chen, J.L., Lawrence, C.: Base reaction control for space-based robots operating in microgravity environment. J. Guidance Control Dyn. 17(2), 263–270 (1994)CrossRefGoogle Scholar
  11. 11.
    Thornton, B., Ura, T., Nose, Y., Turnock, S.: Internal actuation of underwater robots using control moment gyros. In: Oceans 2005-Europe, vol. 1, pp. 591–598. IEEE (2005)Google Scholar
  12. 12.
    Verhoeven, R.: Analysis of the workspace of tendon-based Stewart platforms. Ph.D. thesis, Universität Duisburg-Essen, Fakultät für Ingenieurwissenschaften Maschinenbau und Verfahrenstechnik (2004)Google Scholar
  13. 13.
    Whitsett Jr., C., Cramer, P.: An experimental investigation of attitude control systems for astronaut maneuvering units. AIAA Paper, pp. 73–250 (1973)Google Scholar
  14. 14.
    Yime, E., Quintero, J., Saltaren, R., Aracil, R.: A new approach to avoid internal singularities in CMG with pyramidal shape using sliding control. In: 2009 European Control Conference (ECC), pp. 3899–3903. IEEE (2009)Google Scholar
  15. 15.
    Yoshida, K., Hashizume, K., Abiko, S.: Zero reaction maneuver: flight validation with ETS-VII space robot and extension to kinematically redundant arm. In: IEEE International Conference on Robotics and Automation, 2001, Proceedings 2001 ICRA, vol. 1, pp. 441–446. IEEE (2001)Google Scholar
  16. 16.
    Yoshida, K., Kurazume, R., Umetani, Y.: Dual arm coordination in space free-flying robot. In: IEEE International Conference on Robotics and Automation, 1991. 1991, Proceedings, pp. 2516–2521. IEEE (1991)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • D. Haarhoff
    • 1
  • M. Kolditz
    • 2
  • D. Abel
    • 2
  • S. Brell-Cokcan
    • 1
  1. 1.Chair for Individualized Building ProductionRWTH Aachen UniversityAachenGermany
  2. 2.Institute of Automatic Control, RWTH Aachen UniversityAachenGermany

Personalised recommendations