Sharing Behavior in Online Social Media: An Empirical Analysis with Deep Learning

  • Donghyuk Shin
  • Shu He
  • Gene Moo Lee
  • Andrew B. Whinston
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 258)

Abstract

We conduct a large-scale empirical study on the sharing behavior in social media to measure the effect of message features and initial messengers on information diffusion. Our analysis focuses on messages created by companies and utilizes both textual and visual semantic content by employing state-of-the-art machine learning methods: topic modeling and deep learning. We find that messages with multiple conspicuous images and messengers with similar content are crucial in the diffusion process. Our approach for semantic content analysis, particularly for visual content, bridges advanced machine learning techniques for effective marketing and social media strategies.

Keywords

Social media Information diffusion Deep learning Topic modeling Community analysis 

References

  1. 1.
    Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O.: The diffusion of microfinance. Science 341(6144) (2013)Google Scholar
  2. 2.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)MATHGoogle Scholar
  3. 3.
    Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 10, P10008 (2008)CrossRefGoogle Scholar
  4. 4.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: ACM International Conference on Multimedia, pp. 675–678 (2014)Google Scholar
  5. 5.
    Lee, D., Hosanagar, K., Nair, H.: The effect of social media marketing content on consumer engagement: evidence from facebook. In: SSRN, p. 2290802 (2014)Google Scholar
  6. 6.
    Liaukonyte, J., Teixeira, T., Wilbur, K.C.: Television advertising and online shopping. Mark. Sci. 34(3), 311–330 (2015)CrossRefGoogle Scholar
  7. 7.
    Pieters, R., Wedel, M., Batra, R.: The stopping power of advertising: measures and effects of visual complexity. J. Mark. 74(5), 48–60 (2010)CrossRefGoogle Scholar
  8. 8.
    Pieters, R., Wedel, M., Zhang, J.: Optimal feature advertising design under competitive clutter. Manage. Sci. 53(11), 1815–1828 (2007)CrossRefGoogle Scholar
  9. 9.
    Shi, Z., Lee, G.M., Whinston, A.B.: Towards a better measure of business proximity: topic modeling for industry intelligence. MIS Q. forthcomingGoogle Scholar
  10. 10.
    Shi, Z., Rui, H., Whinston, A.B.: Content sharing in a social broadcasting environment: evidence from twitter. MIS Q. 38(1), 123–142 (2014)Google Scholar
  11. 11.
    Stieglitz, S., Dang-Xuan, L.: Emotions and information diffusion in social media-sentiment of microblogs and sharing behavior. J. Manage. Inf. Syst. 29(4), 217–248 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Donghyuk Shin
    • 1
  • Shu He
    • 1
  • Gene Moo Lee
    • 2
  • Andrew B. Whinston
    • 1
  1. 1.University of Texas at AustinAustinUSA
  2. 2.University of Texas at ArlingtonArlingtonUSA

Personalised recommendations