Advertisement

A Stability Assessment Framework for Process Discovery Techniques

  • Pieter De Koninck
  • Jochen De Weerdt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9850)

Abstract

An extensive amount of work has addressed the evaluation of process discovery techniques and the process models they discover based on concepts like fitness, precision, generalization and simplicity. In this paper, we claim that stability could be considered as an important supplementary evaluation dimension for process discovery next to accuracy and comprehensibility, with ties to the generalization concept. As such, our core contribution is a new framework to measure stability of process discovery techniques. In this paper, the design choices of the different components of the framework are explained. Furthermore, using an experimental evaluation involving both artificial and real-life event logs, the appropriateness and relevance of the stability assessment framework is demonstrated.

Keywords

Stability Process discovery Conformance checking Validity Log perturbation 

References

  1. 1.
    Bae, J., Caverlee, J., Liu, L., Yan, H.: Process mining by measuring process block similarity. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 141–152. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Bolt, A., de Leoni, M., van der Aalst, W.M.P.: Scientific workflows for process mining: building blocks, scenarios, and implementation. Int. J. Softw. Tools Technol. Transf. 1–22 (2015). doi: 10.1007/s10009-015-0399-5
  3. 3.
    Borja, V., Mucientes, M., Lama, M.: ProDiGen: mining complete, precise and minimal structure process models with a genetic algorithm. Inf. Sci. Innov. Appl. Artif. Neural Netw. Eng. 294, 315–333 (2015)MathSciNetGoogle Scholar
  4. 4.
    Claes, J., Poels, G.: Process mining and the ProM framework: an exploratory survey. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 187–198. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Davison, A.C., Hinkley, D.V.: Bootstrap Methods and Their Application, vol. 1. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  6. 6.
    De Medeiros, A.K.A., Weijters, A.J.M.M., Van Der Aalst, W.M.P.: Genetic process mining: an experimental evaluation. Data Min. Knowl. Discov. 14(2), 245–304 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst. 37(7), 654–676 (2012)CrossRefGoogle Scholar
  8. 8.
    Dijkman, R., Dumas, M., Van Dongen, B., Krik, R., Mendling, J.: Similarity of business process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)CrossRefGoogle Scholar
  9. 9.
    van Dongen, B.F., Dijkman, R.M., Mendling, J.: Measuring similarity between business process models. Adv. Inf. Syst. Eng. 5074, 450–464 (2008)CrossRefGoogle Scholar
  10. 10.
    van Dongen, B.F., Mendling, J., van der Aalst, W.M.P.: Structural patterns for soundness of business process models. In: 10th IEEE International Enterprise Distributed Object Computing Conference, pp. 116–128 (2006)Google Scholar
  11. 11.
    Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with artificial negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Hastie, T., Tibshirani, R., Friedman, J.: Unsupervised learning. In: Hastie, T., Tibshirani, R., Friedman, J. (eds.) The Elements of Statistical Learning: Data Mining, Inference Prediction, 2nd edn, pp. 485–585. Springer, New York (2009)CrossRefGoogle Scholar
  13. 13.
    Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – a proper metric. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 166–181. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Lange, T., Roth, V., Braun, M.L., Buhmann, J.M.: Stability-based validation of clustering solutions. Neural Comput. 16(6), 1299–1323 (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Lee, Y., Lee, J., Jun, C.H.: Stability-based validation of bicluster solutions. Pattern Recogn. 44(2), 252–264 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Levine, E., Domany, E.: Resampling method for unsupervised estimation of cluster validity. Neural Comput. 13(11), 2573–2593 (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    Maruster, L.: A Machine Learning Approach To Understand Business Processes. Eindhoven University of Technology, Eindhoven (2003)Google Scholar
  19. 19.
    de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, A.J.M.M.: Quantifying process equivalence based on observed behavior. Data Knowl. Eng. 64(1), 55–74 (2008)CrossRefGoogle Scholar
  20. 20.
    Van der Aalst, W., Adriansyah, A., Van Dongen, B.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2(2), 182–192 (2012)CrossRefGoogle Scholar
  21. 21.
    Van Der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  22. 22.
    Vanden Broucke, S.K.L.M.: Artificial negative events and other techniques. Ph.D. thesis, KU Leuven (2014)Google Scholar
  23. 23.
    Vanden Broucke, S.K.L.M., De Weerdt, J., Vanthienen, J., Baesens, B.: Determining process model precision and generalization with weighted artificial negative events. IEEE Trans. Knowl. Data Eng. 26(8), 1877–1889 (2014)CrossRefGoogle Scholar
  24. 24.
    Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process compliance analysis based on behavioural profiles. Inf. Syst. 36(7), 1009–1025 (2011)CrossRefzbMATHGoogle Scholar
  25. 25.
    Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Efficient computation of causal behavioural profiles using structural decomposition. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 63–83. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Weijters, A.J.M.M., van der Aalst, W.: Rediscovering workflow models from event-based data using little thumb. Integr. Comput. Eng. 10, 151–162 (2003)Google Scholar
  27. 27.
    Wen, L., Van Der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with non-free-choice constructs. Data Min. Knowl. Discov. 15(2), 145–180 (2007)MathSciNetCrossRefGoogle Scholar
  28. 28.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Zha, H., Wang, J., Wen, L., Wang, C., Sun, J.: A workflow net similarity measure based on transition adjacency relations. Comput. Ind. 61(5), 463–471 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Research Centre for Management Informatics Faculty of Economics and BusinessKU LeuvenLeuvenBelgium

Personalised recommendations