Predictive Business Process Monitoring with Structured and Unstructured Data

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9850)


Predictive business process monitoring is concerned with continuously analyzing the events produced by the execution of a business process in order to predict as early as possible the outcome of each ongoing case thereof. Previous work has approached the problem of predictive process monitoring when the observed events carry structured data payloads consisting of attribute-value pairs. In practice, structured data often comes in conjunction with unstructured (textual) data such as emails or comments. This paper presents a predictive process monitoring framework that combines text mining with sequence classification techniques so as to handle both structured and unstructured event payloads. The framework has been evaluated with respect to accuracy, prediction earliness and efficiency on two real-life datasets.


Process monitoring Predictive monitoring Text mining 



This research is funded by the EU FP7 Programme (project SO-PC-Pro) and by the Estonian Research Council and by ERDF via the Software Technology and Applications Competence Centre (STACC).


  1. 1.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  2. 2.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Castellanos, M., Casati, F., Dayal, U., Shan, M.: A comprehensive and automated approach to intelligent business processes execution analysis. Distrib. Parallel Databases 16(3), 239–273 (2004)CrossRefGoogle Scholar
  4. 4.
    Clifton, L.A., Clifton, D.A., Pimentel, M.A.F., Watkinson, P., Tarassenko, L.: Predictive monitoring of mobile patients by combining clinical observations with data from wearable sensors. IEEE J. Biomed. Health Inf. 18(3), 722–730 (2014)CrossRefGoogle Scholar
  5. 5.
    Conforti, R., de Leoni, M., Rosa, M.L., van der Aalst, W.M.P., ter Hofstede, A.H.M.: A recommendation system for predicting risks across multiple business process instances. Decis. Support Syst. 69, 1–19 (2015)CrossRefGoogle Scholar
  6. 6.
    Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-Based Predictive Process Monitoring. arXiv preprint (2015)Google Scholar
  7. 7.
    Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Freedman, D.: Statistical Models: Theory and Practice. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hong, L., Davison, B.D.: Empirical study of topic modeling in Twitter. In: Proceedings of the First Workshop on Social Media Analytics, pp. 80–88. ACM (2010)Google Scholar
  11. 11.
    Juriceka, B.C., Seborga, D.E., Larimore, W.E.: Predictive monitoring for abnormal situation management. J. Process Control 11(2), 111–128 (2001)CrossRefGoogle Scholar
  12. 12.
    Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. arXiv preprint arXiv:1405.4053 (2014)
  13. 13.
    Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.: Complex symbolic sequence encodings for predictive monitoring of business processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 297–313. Springer, Switzerland (2015)CrossRefGoogle Scholar
  14. 14.
    Lessmann, S., Baesens, B., Seow, H.V., Thomas, L.C.: Benchmarking state-of-the-art classification algorithms for credit scoring: an update of research. Eur. J. Oper. Res. 247(1), 124–136 (2015)CrossRefGoogle Scholar
  15. 15.
    Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Heidelberg (2014)Google Scholar
  16. 16.
    Metzger, A., Leitner, P., Ivanovic, D., Schmieders, E., Franklin, R., Carro, M., Dustdar, S., Pohl, K.: Comparing and combining predictive business process monitoring techniques. IEEE Trans. SMC 45(2), 276–290 (2015)Google Scholar
  17. 17.
    Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods. ACM Comput. Surv. (CSUR) 42(3), 10 (2010)CrossRefGoogle Scholar
  19. 19.
    Wang, S., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic classification. In: Annual Meeting of the Association for Computational Linguistics, pp. 90–94 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of TartuTartuEstonia
  2. 2.STACCTartuEstonia
  3. 3.FBK-IRSTTrentoItaly

Personalised recommendations