Towards Quality-Aware Translations of Activity-Centric Processes to Guard Stage Milestone

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9850)

Abstract

Current translation approaches from activity-centric process models to artifact-centric Guard Stage Milestone (GSM) models operate on the syntactic level. While such translations allow equivalent traces (behaviors) of executions, we argue that they generate poor GSM models for the intended audience (including business managers and process modelers). A specific deficiency of these translations is their inability to relate to relevant domain knowledge, especially groupings of activities to achieve well-known business goals cannot be obtained by syntactic translations. Ironically, this is a main principle of GSM models. We developed an initial ontology based translation framework [14] that incorporates the missing knowledge for improved translations. In this paper we further extend this framework with two metrics for the assessment of quality aspects of resulting GSM translations with domain knowledge, propose a novel semantic rewriting algorithm that enhances the quality of GSM translations, and provide an evaluation of the achievable quality for different classes of input processes. Our evaluation shows that maximum quality scores are achievable if semantics and structure of the input processes are well aligned. Given poorly aligned input processes, a translation method can optimize one of the metrics but not both.

Keywords

Process translation Artifact-centric BPM Guard Stage Milestone GSM Quality metrics 

References

  1. 1.
    Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci. 337(13), 217–239 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bodenreider, O.: Biomedical ontologies in action: role in knowledge management, data integration and decision support. Yearb. Med. Inf. 67–79 (2008)Google Scholar
  3. 3.
    Cardoso, J.: Control-flow complexity measurement of processes, Weyuker’s properties. Int. J. Math. Comput. Phys. Electr. Comp Eng. 1(8), 366–371 (2007)Google Scholar
  4. 4.
    Cortes-Cornax, M., Matei, A., Dupuy-Chessa, S., et al.: Using intentional fragments to bridge the gap between organizational and intentional levels. Inf. Softw. Tech. 58, 1–19 (2015)CrossRefGoogle Scholar
  5. 5.
    Damaggio, E., Hull, R., Vaculín, R.: On the equivalence of incremental and fixpoint semantics for business artifacts with guard-stage-milestone lifecycles. Inform. Syst. 38(4), 561–584 (2013)CrossRefGoogle Scholar
  6. 6.
    Dhama, H.: Quantitative models of cohesion, coupling in software. J. Syst. Soft. 29(1), 65–74 (1995). Oregon Metric WorkshopCrossRefGoogle Scholar
  7. 7.
    Eshuis, R., Van Gorp, P.: Synthesizing data-centric models from business process models. Computing 98, 345–373 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    City Office for Property Management of Hangzhou: 2014 rental subsidies for low income families: processing guidelines, July 2014 (in Chinese)Google Scholar
  9. 9.
    Gemino, A., Wand, Y.: A framework for empirical evaluation of conceptual modeling techniques. Requirements Eng. 9(4), 248–260 (2004)CrossRefGoogle Scholar
  10. 10.
    Gruhn, V., Laue, R.: Complexity metrics for business process models. In: International Conference on Business Information Systems - BIS, vol. 85, pp. 1–12 (2006)Google Scholar
  11. 11.
    Henry, S., Kafura, D.: Software structure metrics based on information flow. IEEE Trans. Softw. Eng. SE–7(5), 510–518 (1981)CrossRefGoogle Scholar
  12. 12.
    Hull, R., Damaggio, E., De Masellis, R., et al.: Business artifacts with guard-stage-milestone lifecycles: managing artifact interactions with conditions and events. In: Proceedings of DEBS, pp. 51–62. ACM (2011)Google Scholar
  13. 13.
    Koliadis, G., Ghose, A.K.: Relating business process models to goal-oriented requirements models in KAOS. In: Hoffmann, A., Kang, B.-H., Richards, D., Tsumoto, S. (eds.) PKAW 2006. LNCS (LNAI), vol. 4303, pp. 25–39. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Köpke, J., Su, J.: Towards ontology guided translation of activity-centric processes to GSM. In: Reichert, M., Reijers, H. (eds.) BPM Workshops 2015. LNBIP, vol. 256, pp. 364–375. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-42887-1_30 CrossRefGoogle Scholar
  15. 15.
    McCarthy, W.E.: The REA accounting model: a generalized framework for accounting systems in a shared data environment. Acc. Rev. 57(3), 554–578 (1982)Google Scholar
  16. 16.
    Moody, D.L.: Theoretical and practical issues in evaluating the quality of conceptual models: current state and future directions. Data Knowl. Eng. 55(3), 243–276 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Popova, V., Dumas, M.: From petri nets to guard-stage-milestone models. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 340–351. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle discovery. Int. J. Coop. Inf. Syst. 24, 44 (2015). http://dx.doi.org/10.1142/S021884301550001X. 1550001CrossRefGoogle Scholar
  19. 19.
    Reijers, H.A., Vanderfeesten, I.T.P.: Cohesion and coupling metrics for workflow process design. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 290–305. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Smirnov, S., Dijkman, R., Mendling, J., Weske, M.: Meronymy-based aggregation of activities in business process models. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 1–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Vanderfeesten, I., Cardoso, J., Mendling, J., Reijers, H., van der Aalst, W.M.P.: BPM and workflow handbook, chapter quality metrics for business process models, p. 179 (2007)Google Scholar
  22. 22.
    Weyuker, E.J.: Evaluating software complexity measures. IEEE Trans. Softw. Eng. 14(9), 1357–1365 (1988)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zugal, S., Pinggera, J., Weber, B., Mendling, J., Reijers, H.A.: Assessing the impact of hierarchy on model understandability – a cognitive perspective. In: Kienzle, J. (ed.) MODELS 2011. LNCS, vol. 7167, pp. 123–133. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Zugal, S., Soffer, P., Haisjackl, C., et al.: Investigating expressiveness and understandability of hierarchy in declarative business process models. Softw. Sys. Model. 14(3), 1081–1103 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUC Santa BarbaraSanta BarbaraUSA
  2. 2.Alpen-Adria UniversitätKlagenfurtAustria

Personalised recommendations