Dealing with Behavioral Ambiguity in Textual Process Descriptions

  • Han van der Aa
  • Henrik Leopold
  • Hajo A. Reijers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9850)


Textual process descriptions are widely used in organizations since they can be created and understood by virtually everyone. The inherent ambiguity of natural language, however, impedes the automated analysis of textual process descriptions. While human readers can use their context knowledge to correctly understand statements with multiple possible interpretations, automated analysis techniques currently have to make assumptions about the correct meaning. As a result, automated analysis techniques are prone to draw incorrect conclusions about the correct execution of a process. To overcome this issue, we introduce the concept of a behavioral space as a means to deal with behavioral ambiguity in textual process descriptions. A behavioral space captures all possible interpretations of a textual process description in a systematic manner. Thus, it avoids the problem of focusing on a single interpretation. We use a compliance checking scenario and a quantitative evaluation with a set of 47 textual process descriptions to demonstrate the usefulness of a behavioral space for reasoning about a process described by a text. Our evaluation demonstrates that a behavioral space strikes a balance between ignoring ambiguous statements and imposing fixed interpretations on them.


  1. 1.
    Van der Aa, H., Leopold, H., Mannhardt, F., Reijers, H.A.: On the fragmentation of process information: challenges, solutions, and outlook. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) BPMDS 2015 and EMMSAD 2015. LNBIP, vol. 214, pp. 3–18. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  2. 2.
    Van der Aa, H., Leopold, H., Reijers, H.A.: Detecting inconsistencies between process models and textual descriptions. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 90–105. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  3. 3.
    Abiteboul, S., Kanellakis, P., Grahne, G.: On the representation and querying of sets of possible worlds, vol. 16. ACM (1987)Google Scholar
  4. 4.
    Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applications. IEEE Trans. Knowl. Data Eng. 21(5), 609–623 (2009)CrossRefGoogle Scholar
  5. 5.
    Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for business process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Ghose, A., Koliadis, G., Chueng, A.: Process discovery from model and text artefacts. In: 2007 IEEE Congress on Services, pp. 167–174. IEEE (2007)Google Scholar
  8. 8.
    de AR Gonçalves, J.C., Santoro, F.M., Baiao, F.A.: Business process mining from group stories. In: 13th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2009, pp. 161–166. IEEE (2009)Google Scholar
  9. 9.
    Imieliński, T., Lipski Jr., W.: Incomplete information in relational databases. J. ACM (JACM) 31(4), 761–791 (1984)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Leopold, H., Mendling, J., Polyvyanyy, A.: Supporting process model validation through natural language generation. IEEE Trans. Software Eng. 40(8), 818–840 (2014)CrossRefGoogle Scholar
  11. 11.
    Leopold, H., Pittke, F., Mendling, J.: Automatic service derivation from business process model repositories via semantic technology. J. Syst. Softw. 108, 134–147 (2015)CrossRefGoogle Scholar
  12. 12.
    Liu, Y., Muller, S., Xu, K.: A static compliance-checking framework for business process models. IBM Syst. J. 46(2), 335–361 (2007)CrossRefGoogle Scholar
  13. 13.
    Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 15–26 (2007)Google Scholar
  14. 14.
    Peng, L., Diao, Y.: Supporting data uncertainty in array databases. In: ACM SIGMOD International Conference on Management of Data, pp. 545–560. ACM (2015)Google Scholar
  15. 15.
    Pittke, F., Leopold, H., Mendling, J.: When language meets language: anti patterns resulting from mixing natural and modeling language. In: Fournier, F., Mendling, J. (eds.) BPM 2014 Workshops. LNBIP, vol. 202, pp. 118–129. Springer, Heidelberg (2015)Google Scholar
  16. 16.
    Riefer, M., Ternis, S.F., Thaler, T.: Mining process models from natural language text: a state-of-the-art analysis. In: Multikonferenz Wirtschaftsinformatik (MKWI-16), March 9–11, Illmenau, Germany. Universität Illmenau (2016)Google Scholar
  17. 17.
    Sarma, A.D., Benjelloun, O., Halevy, A., Widom, J.: Working models for uncertain data. In: 22nd International Conference on Data Engineering, p. 7. IEEE (2006)Google Scholar
  18. 18.
    Selway, M., Grossmann, G., Mayer, W., Stumptner, M.: Formalising natural language specifications using a cognitive linguistic/configuration based approach. Inf. Syst. 54, 191–208 (2015)CrossRefGoogle Scholar
  19. 19.
    Sinha, A., Paradkar, A.: Use cases to process specifications in Business Process Modeling Notation. In: IEEE International Conference on Web Services, pp. 473–480 (2010)Google Scholar
  20. 20.
    Smirnov, S., Weidlich, M., Mendling, J.: Business process model abstraction based on behavioral profiles. In: Weske, M., Yang, J., Fantinato, M., Maglio, P.P. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 1–16. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Viorica Epure, E., Martin-Rodilla, P., Hug, C., Deneckere, R., Salinesi, C.: Automatic process model discovery from textual methodologies. In: 2015 IEEE 9th International Conference on Research Challenges in Information Science (RCIS), pp. 19–30. IEEE (2015)Google Scholar
  22. 22.
    Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based on behavioral profiles of process models. IEEE Trans. Software Eng. 37(3), 410–429 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process compliance analysis based on behavioural profiles. Inf. Syst. 36(7), 1009–1025 (2011)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Han van der Aa
    • 1
  • Henrik Leopold
    • 1
  • Hajo A. Reijers
    • 1
    • 2
  1. 1.Department of Computer SciencesVU University AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations