Semantics and Analysis of DMN Decision Tables

  • Diego Calvanese
  • Marlon Dumas
  • Ülari Laurson
  • Fabrizio M. MaggiEmail author
  • Marco Montali
  • Irene Teinemaa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9850)


The Decision Model and Notation (DMN) is a standard notation to capture decision logic in business applications in general and business processes in particular. A central construct in DMN is that of a decision table. The increasing use of DMN decision tables to capture critical business knowledge raises the need to support analysis tasks on these tables such as correctness and completeness checking. This paper provides a formal semantics for DMN tables, a formal definition of key analysis tasks and scalable algorithms to tackle two such tasks, i.e., detection of overlapping rules and of missing rules. The algorithms are based on a geometric interpretation of decision tables that can be used to support other analysis tasks by tapping into geometric algorithms. The algorithms have been implemented in an open-source DMN editor and tested on large decision tables derived from a credit lending dataset.


Decision model and notation Decision table Sweep algorithm 



This research was partly funded by an Institutional Grant of the Estonian Research Council.


  1. 1.
    Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.S.: Scalable sweeping-based spatial join. In: VLDB (1998)Google Scholar
  2. 2.
    Batoulis, K., Meyer, A., Bazhenova, E., Decker, G., Weske, M.: Extracting decision logic from process models. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 349–366. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  3. 3.
    CODASYL Decision Table Task Group: A modern appraisal of decision tables: a CODASYL report. ACM (1982)Google Scholar
  4. 4.
    de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Hall, M.A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  6. 6.
    Hewett, R., Leuchner, J.: Restructuring decision tables for elucidation of knowledge. Data Knowl. Eng. 46(3), 271–290 (2003)CrossRefGoogle Scholar
  7. 7.
    Hoover, D.N., Chen, Z.: Tablewise, a decision table tool. In: Proceedings of COMPASS, pp. 97–108 (1995)Google Scholar
  8. 8.
    Object Management Group: Decision Model and Notation (DMN) 1.0 (2015)Google Scholar
  9. 9.
    Pawlak, Z.: Decision tables - a rough set approach. Bull. EATCS 33, 85–95 (1987)zbMATHGoogle Scholar
  10. 10.
    Pooch, U.W.: Translation of decision tables. Compt. Surv. 6(2), 125–151 (1974)CrossRefGoogle Scholar
  11. 11.
    Vanthienen, J., Dries, E.: Illustration of a decision table tool for specifying and implementing knowledge based systems. Int. J. Artif. Intell. Tools 3(2), 267–288 (1994)CrossRefGoogle Scholar
  12. 12.
    Vanthienen, J., Mues, C., Aerts, A.: An illustration of verification and validation in the modelling phase of KBS development. Data Knowl. Eng. 27(3), 337–352 (1998)CrossRefzbMATHGoogle Scholar
  13. 13.
    Zaidi, A.K., Levis, A.H.: Validation and verification of decision making rules. Automatica 33(2), 155–169 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Diego Calvanese
    • 1
  • Marlon Dumas
    • 2
  • Ülari Laurson
    • 2
  • Fabrizio M. Maggi
    • 2
    Email author
  • Marco Montali
    • 1
  • Irene Teinemaa
    • 2
  1. 1.Free University of Bozen-BolzanoBolzanoItaly
  2. 2.University of TartuTartuEstonia

Personalised recommendations