Semantical Vacuity Detection in Declarative Process Mining

  • Fabrizio Maria Maggi
  • Marco Montali
  • Claudio Di Ciccio
  • Jan Mendling
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9850)

Abstract

A large share of the literature on process mining based on declarative process modeling languages, like declare, relies on the notion of constraint activation to distinguish between the case in which a process execution recorded in event data “vacuously” satisfies a constraint, or satisfies the constraint in an “interesting way”. This fine-grained indicator is then used to decide whether a candidate constraint supported by the analyzed event log is indeed relevant or not. Unfortunately, this notion of relevance has never been formally defined, and all the proposals existing in the literature use ad-hoc definitions that are only applicable to a pre-defined set of constraint patterns. This makes existing declarative process mining technique inapplicable when the target constraint language is extensible and may contain formulae that go beyond pre-defined patterns. In this paper, we tackle this hot, open challenge and show how the notion of constraint activation and vacuous satisfaction can be captured semantically, in the case of constraints expressed in arbitrary temporal logics over finite traces. We then extend the standard automata-based approach so as to incorporate relevance-related information. We finally report on an implementation and experimentation of the approach that confirms the advantages and feasibility of our solution.

Keywords

Vacuity detection Declarative process mining Constraint activation 

References

  1. 1.
    van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: balancing between flexibility and support. Comput. Sci. - R&D 23, 99–113 (2009)Google Scholar
  2. 2.
    Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Trans. Softw. Eng. Methodol. 20(4), 14 (2011)CrossRefGoogle Scholar
  3. 3.
    Beer, I., Eisner, C.: Efficient detection of vacuity in temporal model checking. Formal Meth. Syst. Des. 18(2), 141–163 (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Burattin, A., Maggi, F.M., van der Aalst, W.M.P., Sperduti, A.: Techniques for a posteriori analysis of declarative processes. In: Proceedings of EDOC. IEEE (2012)Google Scholar
  5. 5.
    Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. In: Jensen, K., van der Alast, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Damaggio, E., Deutsch, A., Hull, R., Vianu, V.: Automatic verification of data-centric business processes. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 3–16. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F.M., Montali, M.: Monitoring business metaconstraints based on LTL and LDL for finite traces. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 1–17. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on finite traces: insensitivity to infiniteness. In: Proceedings of AAAI (2014)Google Scholar
  9. 9.
    De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: Proceedings of IJCAI. AAAI (2013)Google Scholar
  10. 10.
    De Masellis, R., Maggi, F.M., Montali, M.: Monitoring data-aware business constraints with finite state automata. In: Proceedings of ICSSP. ACM (2014)Google Scholar
  11. 11.
    Di Ciccio, C., Maggi, F.M., Mendling, J.: Efficient discovery of target-branched declare constraints. Inf. Syst. 56, 258–283 (2016)CrossRefGoogle Scholar
  12. 12.
    Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Ensuring model consistency in declarative process discovery. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 144–159. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  13. 13.
    Di Ciccio, C., Mecella, M.: A two-step fast algorithm for the automated discovery of declarative workflows. In: Proceedings of CIDM. IEEE (2013)Google Scholar
  14. 14.
    Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes. ACM Trans. Manag. Inf. Syst. 5(4), 24 (2015)CrossRefGoogle Scholar
  15. 15.
    Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal properties on running programs. In: Proceedings of ASE. IEEE (2001)Google Scholar
  16. 16.
    Knuplesch, D., Ly, L.T., Rinderle-Ma, S., Pfeifer, H., Dadam, P.: On enabling data-aware compliance checking of business process models. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 332–346. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Int. J. Softw. Tools Technol. Transf. 4, 224–233 (2003)CrossRefMATHGoogle Scholar
  18. 18.
    Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative logic-based models from labeled traces. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: An alignment-based framework to check the conformance of declarative process models and to preprocess event-log data. Inf. Syst. 47, 258–277 (2015)CrossRefGoogle Scholar
  20. 20.
    Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012)Google Scholar
  21. 21.
    Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring business constraints with linear temporal logic: an approach based on colored automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 132–147. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process models. In: Proceedings of CIDM (2011)Google Scholar
  23. 23.
    Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.P.: Runtime verification of LTL-based declarative process models. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 131–146. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Montali, M.: Declarative open interaction models. In: Montali, M. (ed.) Specification and Verification of Declarative Open Interaction Models. LNBIP, vol. 56, pp. 11–45. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Monitoring business constraints with the event calculus. ACM Trans. Intell. Syst. Technol. 5(1), 17 (2013)CrossRefGoogle Scholar
  26. 26.
    Pesic, M., Schonenberg, H., van der Aalst, W.: DECLARE: full support for loosely-structured processes. In: Proceedings of EDOC. IEEE (2007)Google Scholar
  27. 27.
    Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus declarative process modeling languages: an empirical investigation. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 383–394. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Zugal, S., Pinggera, J., Weber, B.: The impact of testcases on the maintainability of declarative process models. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E., Schmidt, R., Bider, I. (eds.) BPMDS 2011 and EMMSAD 2011. LNBIP, vol. 81, pp. 163–177. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fabrizio Maria Maggi
    • 1
  • Marco Montali
    • 2
  • Claudio Di Ciccio
    • 3
  • Jan Mendling
    • 3
  1. 1.University of TartuTartuEstonia
  2. 2.Free University of Bozen-BolzanoBolzanoItaly
  3. 3.Vienna University of Economics and BusinessViennaAustria

Personalised recommendations